FOOD ANALYSIS I. Solid Phase Extraction

Principles Recent Developments Applications

Basic Principles of SPE

Sample Preparation Overview
Fundamentals of SPE
Various Modes of SPE
Packed Bed vs. Disk Format

The use of Dual Phases

Step by Step Method
 Development; Validation

Recent Developments in SPE

- Stacked / Layered Phases
- Argentation Chromatography
- **& ISOLUTE ENV+**
- MSPD: Matrix Solid Phase Dispersion
- Mechanised L/L Extraction
- MIP and Immunoaffinity Columns
- SPE Automation

Applications

Multi-Residue Methods using

- Cation-Exchange SPE
- > DIOL / NH2 SPE
- Layered-Column SPE
- > GPC Clean-Up
- SPE of Pesticides & Mycotoxins
- MSPD of Drug Residues
- Isolation of Dimetridazole

Definition of SPE

Separation or removal of an analyte or analytes from a mixture of compounds by selective partitioning of the compounds between a solid phase (sorbent) and a liquid phase (solvent).

SPE Mechanism Selection (1)

Functionality	Analyte	Mechanism
Hydrophobic	NH ₂	Non-Polar
H-Bonding	NH ₂	Polar
lonic	NH ₃ ⁺	lon-Exchange

SPE Mechanism Selection (2)

ISOLUTE Non-Polar Sorbents

C18 * **MFC18 C8** * C2 * **C4 C6 PH** * CH (EC) CN (EC) 101 ENV+

Octadecyl Octadecyl Octyl **Ethyl Butyl** Hexyl Phenyl Cyclohexyl Cyanopropyl **PS-DVB Polystyrene**

* EC

Silica Surface Variations

Free silanol

Adsorbed water

Geminal silanol

Siloxane

Bound silanols

Monochlorosilane Chemistry

Trichlorosilane Chemistry

Non-Polar Interactions

	Sorbents	Interactions
C 8		van der Waals
PH		van der Waals
C2	-si	van der Waals

Bonded Silica Surface

ISOLUTE Polar Sorbents

Si Silica
NH₂ Aminopropyl
PSA Primary Secondary Amine
Diol 2,3-Dihydroxypropyl
CN * Cyanopropyl

* Also available in endcapped chemistry Used to extract polar compounds from non-aqueous matrices (e.g. Hexane, ethyl acetate, dichloromethane, etc.)

Polar Interactions

NH₂ vs. Silica Columns

The use of NH₂ columns in place of silica columns is strongly recommended. This is because the activity of silica columns can be affected by moisture content. IST columns are manufactured to a constant standard moisture level, so their activity will always be reliable, but adaption of literature methods using other types of silica can be problematic. Different moisture levels will affect the amount and polarity of solvents necessary for elution of the analytes. NH₂ columns are recommended as they are much less susceptible to this variation.

ISOLUTE Ion-Exchange Sorbents

Anion Exchange:

Weak:	NH ₂	Aminopropyl
	PSA	Primary Secondary Amine
Strong:	SAX	Quaternary amine

Cation exchange:Weak:CBACarboxypropylStrong:SCXBenzenesulphonic acidPRSPropylsulphonic acid

Ionic Interactions

Multiple Interactions

pK of Sulfonamides

Mixed-Mode SPE

SPE Modes of Operation

- Six-step procedure (typical)
- Four-step procedure
- Stacked columns
- Layered phases
- Mixed phases

A Typical SPE Procedure Involves Six Steps

1. Sample pre-treatment

- 2. Column solvation
- 3. Column equilibrium
- 4. Sample application
- **5. Interference elution**
- 6. Analyte elution

Six Step SPE Procedure

Sample Pre-Treatment

Optimize sample for analyte retention Proper dilution / ionic strength

- Correct pH
- Analytes free in solution
- Remove particulates

Acid Dissociation Constants

$HA \leftrightarrow H^+ + A^-$

 $K_a = \frac{[H^+] [A^-]}{[HA]}$

 $K_{HOAC} = 1.75 \times 10^{-5}$ $K_{HCN} = 6.20 \times 10^{-10}$

$pK_a = -\log K_a$

 $pK_{HOAC} = 4.76$ $pK_{HCN} = 9.21$

Henderson-Hasselbach Equation

$pH = pK_a + log \frac{[A^-]}{[HA]}$

Choose a pH at least 2 units away from pK_a

Influence of pH on Retention Non-Polar Phases $(pK_a = 5)$

рН 3.0	pH 7.0	
RCOOH	RCOO-	
C2	C2	

Influence of pH on Retention Ion-Exchange Phases $(pK_a = 5)$

Column Conditioning

Column Conditioning

Non-polar sorbents MeOH, MeCN, THF Polar sorbents > nC6, EtAc; same solvent as the sample matrix Ion-exchange sorbents ➤ MeOH, MeCN, THF

Column Equilibration

Remove excess solvation solvent

- Normalize sorbent to sample condition (optimum environment for retention)
 - Ionic strength, pH, solvent composition
- lon-exchange
 - Counter-ion, pH

Sample Application

Type of Analyte	Type of Sorbent	Cartridge Size (mL)	Loading Rate (mL / min)
		1	1-5
Neutral	Hydrophobic	3	3-15
		6	10-120
Cation	lon	1	0.5-2
or Anion	Exchange	3	1-5
		6	3-35

Interference Elution

Analyte-insoluble solvent
Selective mixtures
Maintain analyte retention

(pH control can be important)

Optimize flow rate

Analyte Elution

- Elution solvent must overcome both PRIMARY and SECONDARY interactions
- * 100% elution in < 20 bed volumes</p>
- Use selective solvents / mixtures
- Optimize flow rate

Example: Atrazine

Atrazine Structure

Column: C18, 1g / 6mL 1. Sample pre-treatment: none 2. Solvation: 10mL MeOH **3. Equilibration: 10mL water** 4: Sample: 500mL aqueous 5: Wash: 10mL water; dry: 30min 6: Elution: 2 x 4 mL acetone

Atrazine from Corn Oil Polar Retention

Column: DIOL, 500mg / 6mL 1. 2mL oil ⇒ dilute w. 18mL of nC6 2. Solvation: 6mL nC6 **3. Equilibration: none** 4. Sample: 20mL (diluted) 5. Wash: 2mL nC6 6. Elution: 1mL methanol

Atrazine from Soybeans Cation-Exchange Mechanism

Column: SCX, 500mg / 6mL

- 1. 5g sample + 10mL ACN ⇒ homogenize, filter; dilute 5mL filtrate w. 20mL 1% AcOH
- 2. Solvation: 3mL methanol
- 3. Equilibration: 6mL 1% AcOH
- 4. Sample: 25mL (diluted)
- 5. Wash: 1mL of 1% AcOH and 1ml of ACN
- 6. Elution: 2mL of 1:1 ACN 0.1M K₂HPO₄

Multi-Residue Method (PRS)

Wide range of veterinary drugs with cationic functionality

- Anthelmintics
 - Benzimidazoles, levamisole
- Tranquillizers
- Antibacterials
 - Sulfonamides, quinolones
- « β-Agonists

Multi-Residue Method (PRS)

Column: PRS, 500mg / 6mL

- 2 x 20mL ACN, Ultra-Turrax;
 filter, then acidify w. 200µL of AcOH
- 2. Solvation: 5mL methanol
- 3. Equilibration: 5mL of ACN : AcOH (200:1)
- 4. Sample: 40mL (diluted)
- 5. Wash: 5-5mL of EtAc, acetone, methanol
- 6. Elution: 5ml of acetone:NH₄OH (sg 0.88) 1:1

Sample Clean-Up: Four-Step Method

NO trace enrichment

- 1. Sample pre-treatment
- 2. Column solvation
- 3. Column equilibration
- 4. Interference removal

Four-Step SPE Procedure

Column solvation, equilibration

Sample Application

OP Pesticides in Cherries

Extraction Column: ISOLUTE SAX / PSA, 1g/6 mL

- **1. Sample pre-treatment**
- 2. Column solvation
- 3. Column equilibration
- 4. Sample application

20g sample + 100 mL ACN. Filter.

Conc. to 25 mL. Add sat'd NaCl. Extract with DCM. Dry with sodium sulfate cartridge. Evap to dryness. Reconstitue with hexane / acetone 95:5

10mL hexane/acetone 95:5

Not required

10mL hexane/acetone 95:5

OP Pesticides in Cherries Percent Recoveries

	5% Acetone	10% Acetone
Ethoprophos	97	91
Diazinon	84	82
Etrimphos	92	86
Parathion - methyl	90	87
Fenitrothion	98	97
Pirimiphos - methyl	101	98
Malathion	61	88
Fenthion	93	90
Chlorpyriphos	92	92
Quinalphos	85	86
EPN	81	92

Stacked Columns

Extending the range

Enhancing the selectivity

Method development

Multiple detection protocol

Layered Phases (Loading)

Layered Phases (Eluting)

OC Pesticides from Water Extraction on Layered Phases

ISOLUTE[®] C2 / C18

Sample pre-treatment Column solvation Column equilibration Sample application Interference elution Analyte elution HCI to pH=2, Methanol, 0.5% 5 mL Methanol

10 mL reagent water

One liter in 1/2 hour

10 mL water, 10 min N₂

Two x 2 mL THF

OC Pesticides from Water Percent Recovery

Pesticides	C18(EC)	C2	C18(EC)	SUM
Aldrin	73	85	0	85
4,4'-DDE	62	86	5	91
Endosulfan II	78	65	37	102
AVG	88	54	43	97
17 pesticides				

What About Solid Samples?

Tissue

- > growth promoters
- Anthelmintics
- Sulfonamides, quinolones
- β-Agonists
- Vegetables
 - > pesticides

Extraction of Solid Samples: Traditional Approach

Liquid / liquid extraction

Extraction of Solid Samples: MSPD Approach

- Homogenise the sample with the sorbent
- Transfer to empty reservoir or cleanup column (Si, NH2, FI, SAX/PSA)
- Elute interferences
- Elute analytes

MSPD Procedure

Advantages of MSPD

 Homogenisation, analyte extraction and clean-up are simultaneous

& Less labour intensive

- Less operator dependant
- Time saving
- Low solvent consumption

ISOLUTE® MSPD Sorbents

 Optimized to blend quickly (less than 1min) and easily

 Sample / sorbent blend is homogeneous, dry and free-flowing
 C18(UC) and C18(EC) chemistries are available

Standard vs. MSPD Sorbents

Sample: bovine liver, fortified with 5 ppb (ng/g) clenbuterol MSPD conditions: blend 0.5g sample with 2.0 g sorbent (standard or MSPD grade) Analysis: RIA

Standard vs. MSPD Sorbents: Recovery, Reproducibility

 Recovery

 MSPD C18(EC) n=5
 91.0%

 Standard C18(EC) n=6
 91.0%

 RSD
 MSPD C18(EC) n=5
 5.5%

 Standard C18(EC) n=6
 15.5%

Pesticides in Fruits and Vegetables: MSPD Procedure

Mix 100g of sample thoroughly
 Blend 0.5g of sample with a glass pestle into 0.5g of MSPD C18(EC)
 Transfer the mixture into a Silica column (0.5g/6mL); insert top frit

 Elute the analytes with 10mL of ethyl-acetate

Pesticides in Fruits and Vegetables: Recoveries

Aldrin
Captafol
Chlorpyriphos
Dicofol
β-Endosulfan
Fenitrothion
Phosmet
Methidathion
Methyl-parathion

101	Carbophenothion	86
87	Chlorfenvinphos	94
108	Diazinon	94
105	α-Endosulfan	96
95	Ethion	93
98	Folpet	91
66	Malathion	87
85	Methyl-azinphos	57
97	Tetradifon	98

(10 — 500 ng / g) n = 5

MIP – Molecularly Imprinted Polymers

Class-Selective MIPs

- Beta-Agonists
- Triazines
- Nitroimidazoles
- Steroids
- * Peptides, Proteins

Unique MIPs

- Clenbuterol
- * NNAL
- Riboflavin
- Chloramphenicol
- Nicotine

MIP vs. Mixed-Mode SPE

SUMMARY

- SPE: effective sample clean-up and concentration technique
- New forms of SPE: wide range of analytes can be monitored
- Solid samples can also be processed (MSPD)
- Specialty tubes: selective isolation is possible