

EPA Method 549.2 Revision 1.0

# Determination of Diquat and Paraquat in Drinking Water by Liquid-Solid Extraction and High Performance Liquid Chromatography with Ultraviolet Detection\*

#### **UCT Products:**

ENVIRO-CLEAN® **EEC08156** (500 mg C8, 6 mL cartridge) or ENVIRO-CLEAN® **ECUNI549** (500 mg C8, 83 mL Universal cartridge) July 18, 2011

| Analyte                                                    | CASRN     |  |
|------------------------------------------------------------|-----------|--|
| <b>Diquat</b> 1,1'-ethylene-2,2'-bipyridium dibromide salt | 85-00-7   |  |
| Paraquat 1,1'-dimethyl-4,4'-bipyridium dichloride salt     | 1910-42-5 |  |

# **Initial Preparation**

- Since diquat and paraquat are ionic analytes there is the potential for adsorption on glass surfaces
- Use only plastic labware. Labware must be thoroughly washed and dried before use
- Adjust a 250 mL of sample to pH 7 9 with 10 % aqueous sodium hydroxide or 10% aqueous hydrochloric acid solution depending upon initial pH
- Assemble a C8 extraction cartridge in an appropriate manifold apparatus
- If the sample contains particulates, filter through 0.45 µm Nylon membrane filter
- Ammonium hydroxide is volatile. Make fresh solutions daily from relatively new ammonium hydroxide stock

## Sample Cleanup

- Cleanup procedures may not be necessary for a relatively clean sample matrix
- If the sample contains particulates the entire sample should be passed through a 0.45 mm Nylon of PTFE membrane filter into a plastic container before starting extraction

## **Stock Standard Solutions**

## Diquat dibromide and Paraquat dichloride Stock Solutions (1000 mg/L)

- 1. Dry diquat (diquat dibromide monohydrate) and paraquat (paraquat dichloride tetrahydrate) salts in an oven at 110°C for three hours. Cool in a desiccator
- 2. Repeat process to a constant weight.
- 3. Weigh 0.1968 g of dried diquat salt and 0.1770 g of dried paraquat salt
- 4. Transfer to a silanized glass or polypropylene 100 mL volumetric flask. Add approximately 50 mL of deionized water then dilute to the mark with deionized water

#### Calibration

In order to closely match calibration standards to samples, process standards by the following method:

- Condition a cartridge according to section 1 below.
- Pass 250 mL of reagent water through the cartridge and discard the water.
- Dry the cartridge by passing 5 mL of methanol through it. Discard the methanol.
- Pass 4.0 mL of the eluting solution through the cartridge and catch in a 5 mL silanized volumetric flask.
- Fortify the eluted solution with 100  $\mu$ L of the ion-pair concentrate and with 500  $\mu$ L of the stock standard and dilute to the mark with eluting solution. This provides a 10:1 dilution of the stock.
- Use serial dilution of the calibration standard by the same method to achieve lower concentration standards.

## **Procedure**

## 1. Condition Cartridge

## The cartridge must be conditioned properly before extraction

- a) Place C8 cartridge(s) on a vacuum manifold system
- b) Draw the following solutions through the cartridge in the stated order. The flow rate through the cartridge should be approximately 10 mL/min

# Note: Do not to let the cartridge go dry once starting the addition of solutions

- c) Add 5 mL of reagent water to the cartridge and draw through to waste
- d) Add 5 ml of methanol to the cartridge and soak for about one minute
- e) Apply vacuum to draw most of the methanol through the cartridge. Leave a thin layer on top of the frit
- f) Add 5 ml reagent water to the cartridge
- g) Apply vacuum and draw most of the water through the cartridge. Leave a thin layer of water on the frit
- h) Apply 5 mL of conditioning **Solution A** to the cartridge

**Solution A:** Dissolve 0.500 grams cetyl trimethyl ammonium bromide and 5 mL of ammonium hydroxide in 500 mL of reagent water. Dilute to 1000 mL

- i) Draw a small amount through the cartridge leaving a thin layer on the frit
- j) Soak for one minute
- k) Use 5 mL of reagent grade water to rinse the **Solution A** from the cartridge. Allow a thin layer of water to remain on the cartridge frit
- I) Rinse the cartridge with 10 mL of methanol
- m) Rinse the cartridge with 5 mL of reagent grade water
- n) Condition the cartridge with 20 mL of **Solution B.**

**Solution B**: Dissolve 10 g 1-hexanesulfonic acid sodium salt and 10 mL of ammonium hydroxide in 250 mL of DI water then dilute to 500 mL

o) Retain Solution B in the cartridge to keep it activated. Do Not Rinse

## 2) Sample Extraction

- a) Determine the pH of the sample. Adjust to 7.0 9.0 with 10% NaOH or 10% v/v HCl before extracting
- b) Using a volumetric flask add 250 mL of the water sample to the reservoir and start the vacuum at a rate of 3 to 6 mL per minute
- Draw the sample through the cartridge draining as much water from the sample bottle as possible
- d) Rinse the cartridge with 5 ml of HPLC grade methanol
- e) Draw vacuum through the cartridge for 1 minute to dry
- f) Remove the filtration assembly and insert a silanized 5 mL volumetric (plastic vessel is preferred) flask for collection of the eluate

# 3) Cartridge Elution

- a) Add 4.5 ml of Cartridge Eluting Solution to the cartridge
- b) Allow to soak for one minute

**Cartridge Elution Solution:** Dissolve 13.5 mL of orthophosphoric acid and 10.3 mL of diethylamine in 500 mL of DI water, then dilute to 1 liter

- c) Elute at 1-2 mL (drop by drop) per minute drawing all solution through the cartridge
- d) Using cartridge **lon-pair solution**, add 100 μL to the flask

**Ion-pair Concentrate:** Dissolve 3.75 grams of 1-hexanesulfonic acid in 15 mL of the **Cartridge Elution Solution** and dilute to 25 mL in a volumetric flask with additional **Cartridge Elution Solution** 

- e) Bring the eluate to a known volume of 5 mL using Cartridge Elution Solution
- f) The extract is now ready for HPLC analysis as shown below

# 4) HPLC Analysis

Mobile Phase – Prepare mobile phase by adding reagents 1-4 to 500 mL DI water:

- 1. 13.5 mL of orthophosphoric acid
- 2. 10.3 mL of diethylamine
- 3. 3.0 g of 1-hexanesulfonic acid, sodium salt
- 4. Mix and bring to a final volume of 1 L with DI water

#### **HPLC Conditions**

Column: Phenomenex Spherisorb, 3F, 4.6 mm x 100 mm or equivalent

Column Temperature: 35° C

Flow Rate: 2.0 mL/min., Ion-Pair Mobile Phase

Injection Volume: 200 µL

Photodiode Array Detector Settings: Wavelength Range: 210 - 370 nm

Sample Rate: 1 scan/sec. Wavelength Step: 1 nm Integration Time: 1 sec.

Run Time: 5.0 min.

Quantitation Wavelengths: Diquat 308 nm, Paraquat 257 nm

\*EPA Method 549.2 Revision 1.0, Determination of Diquat and Paraquat in Drinking Water by Liquid-Solid Extraction and High Performance Liquid Chromatography with Ultraviolet Detection, J.W. Munch (USEPA) and W.J. Bashe (DynCorp/TAI) - Method 549.2, Revision 1.0 (1997), National Exposure Research Laboratory, Office Of Research And Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268