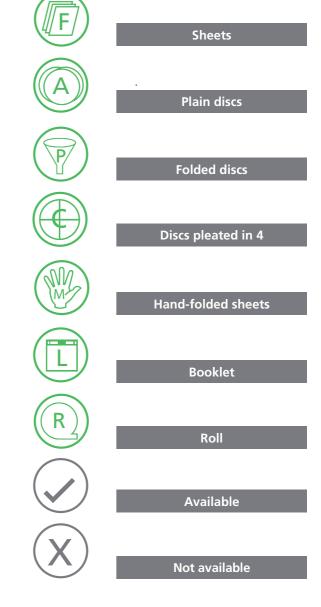


Dear Customer, We are glad to present you filtraTECH 's catalogue.

s a French company dedicated to filtration for laboratories and industries, filtraTECH offer an exhaustive range of analytical filter papers (quantitative, qualitative, glass microfiber...), special papers (for protection, cleaning, weighing, chromatography...) and amongst other products, micro filtration articles (membranes, syringe filters).


Thanks to the 25-year-old expertise of the team, the company demonstrates our know-how in accompanying and advising our customers in the choice and development of tailored solutions.

The small structure of the company enables flexible and agile responses to specific customers requests. Our know-how lays in our ability in tailoring products to the most specific requests and we are capable of developing particular converting tools.

We want to progress and would be glad to receive all your comments or questions. Help us improve our processes, catalogue or products and feel free to contact our team at info@filtratech.fr

We thank you for trusting filtraTECH 's team.

To help you go through this catalogue, we have created some pictograms as follows:

MANAGEMENT OF QUALITY

▼ ISO 9001 Certification

ISO 9001:2015 is the reflect of the everyday efforts of the team and of our commitment for continuous progress on all fields (work organization, internal and external communication, help guidelines...).

This ambitious Quality project of reorganizing the company as requested by the standards was successfully achieved and filtraTECH obtained its certification in 2018 by SGS, giving the company an international outreach.

Shall our partners be associates, suppliers, employees or service providers, they can rest assured that we are fully committed to the satisfaction and fulfillment of all. Quality is truly and sustainably at the very heart of filtraTECH's philosophy.

▶ Process compliance & continuous quality control

In order to guarantee the best quality of our services and products, we detailed every step of your order (order receipt, manufacture, preparation, shipment, billing, complaint) in processes. The different procedures described make it possible to ensure

that the treatment will be identical regardless of the operator. The procedures implemented at filtraTECH involve quality control at all stages of manufacturing: visual inspection, quantitative verification, and compliance with both customer and internal specifications. In the event of a complaint, it is therefore easy to identify its cause and deal with it efficiently in order to avoid replicating any incidents.

▼ Traceability

The filtering products of our range meet well-defined technical characteristics. We only work with suppliers capable of meeting these requirements and guaranteeing the reliability and durability of the products. From the receipt of raw materials to the delivery of finished products in your warehouses, we rigorously monitor each stage of manufacturing or preparation of your orders and a batch number traces each item.

▼ European sourcing & made in France

We select our suppliers with the greatest care and are proud that all our filter paper suppliers are European. We transform the filter papers in France where we handle all our operations (manufacturing, packing, handling).

Buying products from filtraTECH is not only about choosing high quality products with reasonable pricing, it is asking for efficient and complete service, strong quality management, and customer oriented strategy. Your satisfaction is our core priority.

BEYOND MAINSTREAM PRODUCTS

Our catalogue covers a wide range of filtration products and therefore applications. However, if you do not find the product you need in our range, we will work with our suppliers to find the product that will give you the most satisfying alternative. In the same spirit, we develop and design cutting tools for less common formats. All you have to do is specify your needs or send us your technical drawing and we will manufacture the right tool.

Our expertise is not limited to cutting, we also know how to innovate in folding, packaging... Do not hesitate to consult us for your special requests.

STRONG SERVICES

Maximized stock

Because we do not belong to any group, we were able to choose as a major strategic axis to deliver your orders in reduced time. On 90% of the best-selling references, we guarantee sufficient stock levels to be able to deliver your orders as quickly as possible (average lead time: 2 weeks). Indeed, we directly manage our stock management policy thanks to our financial independence.

▼ Short response times

With your satisfaction as a top priority, we know that waiting time to get a quote or any other piece of information can make you lose business. That is why we are committed to confirm your orders within 48 hours. Requests for documentation (catalogue, data sheet, safety data sheet, price request...) are treated with the same rigor. Should you have to respond quickly to a tender, you can count on us to support you in closing your deals. Our availability and responsiveness are the keys to your satisfaction.

Optimized order flow

To facilitate your inventory management and reduce your transport costs, we apply as much as possible the consolidation of your orders into a single shipment, fully or partially. This allows you to serve your customers faster. Whenever a request is urgent (your customer is out of stock), we know how to make express dispatches to help you out. Do not hesitate to contact us.

▼ Free samples

You are not sure a product is completely suitable for your application? You are answering a tender with samples requested? You are a new customer and would like to know more about filtraTECH 's products? Just contact us. We gladly provide you with free samples of the whole range.

▼ Sales documentation

Every step of the way, we keep in mind to develop roc-solid partnerships with our distributors and in this sense, we always try to provide them with the best services using all our knowledge and know-how. Our role is to counsel and accompany you in the choice of the most suitable products and in the adaptation of the solutions to the end-user needs. To this end, we have created a series of sales documentation to hand to your sales team (thematic leaflets, application field product guides, training...). If you are interested in receiving them, please contact our sales team (sales@filtratech.fr).

TABLE OF CONTENTS

QUALITATIVE ANALYTICAL FILTERS	8
QUANTITATIVE ANALYTICAL FILTERS	9
Quantitative filters for specific applications	10
Strengthened ashless filter	10
GLASS / QUARTZ MICROFIBER FILTER	11
Glass microfiber filter without binder	11
Glass microfiber filter with binder	12
Quartz microfiber	12
SPECIAL PAPERS AND OTHER LABORATORY CONSUMMABLES	13
Bench protective paper	13
Joseph paper	14
Cleaning paper	14
Holder for cleaning paper	14
• Lens cleaning tissue	15
Blotting pad	15
Weighing paper	15
Weighing boat	15
Phase separating paper	16
Phosphate-free filter paper	16
Nitrogen free filter paper	17
Black filter paper	17
Activated carbon filter paper	18
Test seed paper	18
Brewery industry filter paper	19
Sugar industry filter paper	19
Non woven filter & filter - card	20
Antibiotic assays	21
Cyto-centrifugal paper	21
Sterilization paper	21
Chromatography paper	22
Blotting paper	23
Printed circuit board control paper	23
Cellulose stopper	24
INDICATOR PAPER	25
pH indicator paper	26
• Reagent paper	26
Non-bleeding ph test strip	27
• Liquid pH pack	27

•

MEMBRANES FILTERS	28
• CA – Cellulose acetate	28
MCE – Mixed cellulose esters	29
MCE – Continuous membranes	30
Membrane dispenser	30
• NYL – Polyamide	30
• PC – Polycarbonate	31
PES – Polyethersulfone	31
• PP – Polypropyene	31
PTFE – Polytetra-fluorethyene	32
RC – Regenerated cellulose	32
FILTRATION DEVICES	33
Glass solvent filters	33
Disposable microfiltration unit	33
Vacuum pump	34
SS316 multiple-branch manifold for vacuum system	34
SYRINGE FILTERS	35
CA – Cellulose acetate	36
• FV – Glass microfiber	37
MCE – Mixed cellulose esters	37
• NYL – Polyamide	38
PES – Polyethersulfone	39
PP – Polypropylene	40
PVDF – Polyvinylidene	40
PTFE – Polytetra-fluorethylene	41
RC – Regenerated cellulose	42
Venting filters	42
TABLE OF CHEMICAL COMPATIBILITY	43
EXTRACTION THIMBLES	44
TECHNICAL FILTERS	45
FILTER BOARDS	47
FILTER PRESS SYSTEM	47
FILTER SHEETS	48
NON WOVEN FILTERS	50
MESH FILTERS	51
ACTIVE CARBON CARTRIDGES	51
WOUNDED YARN CARTRIDGES	52
FILTER HOUSING	52
■ INDEX	53
TABLE OF COMPARISON	54
I IDEL OF COMMITMINSORY	J-

STANDARD FILTER PAPERS

• The standard filter papers are made with 100% cellulose and can have various applications in hospitals/medical, in research laboratories, in schools/universities, in industry such as chemical, pharmaceutical, cosmetic, water treatment, food...

filtraTECH's grades: ST60 | ST61 | ST62 | ST63 | ST64 | ST67.

Available in sheets (F), plain discs (A) or folded discs (P).

0	
9	
\vdash	
S	

Smooth filter paper with medium filtration for general applications, economical.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
64	0.15	10-20	50	1.45

// Whatman : 93

$\overline{}$
9
$\tilde{\mathbf{L}}$
رما ما
٠.

Filter paper for analytical works in laboratories with medium filtration.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
73	0.16	5-13	88	1.95

// Whatman :

OI.
12
۳
_
10

Smooth filter paper with fast filtration for general works.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
73	0.17	17-30	22	1.25

// Whatman :

- (Υ	1	
	C)	
п		1	
	7	-	
	•	,	

Thin filter paper with fast filtration.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
60	0.14	36-65	25	1.05

// Whatman :

4	
Ó	
\vdash	
S	

Creped filter paper with very fast filtration.					
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	
120	0.35	40	11	0.75	

// Whatman :

/
9
\vdash
S

Very thin filter paper with very fast filtration.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
50	0.12	17-30	22	0.25

// Whatman :

APPLICATIONS

QUALITATIVE ANALYTICAL FILTERS

• These grades are made with high purity cotton linters fibres and cellulose fibres (ash content of 0.06%). The qualitative filter papers allow to determinate with a great precision the nature of the filtered solutions and to check the composition of the samples. They offer better resistance to chemicals and moisture compared to standard filters and thus can be used for food, beverages, environmental analysis (air, soil...).

filtraTECH's grades: QL01 | QL02 | QL03 | QL04 | QL05 | QL08.

Available in sheets (F), plain discs (A) or folded discs (P).

		Very fast	filtration qualitative fil	ter paper.		
QL01	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	// Whatman :
	80	0.21	15-20	10	>20	\
		Fast fil	tration qualitative filter	r paper.		
QL02	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	// Whatman :
	88	0.18	12-15	20	>20	\
		Medium	filtration qualitative fil	ter paper.		
OL03	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	// Whatman
	87	0.18	8-12	50	>30	N
		Slow fil	ltration qualitative filte	r paper.		 c

		Slow fil	tration qualitative filter	r paper.			
QL04	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	// Whatman 6	
	80	0.16	4-7	100	>20	/	
		Vancalau	filenski su su slikaki us fil				
		very slow	filtration qualitative fil	ter paper.		 u	
QL05	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	// Whatman 5	
	80	0.16	2-4	200	>20	//	

		Very slow	filtration qualitative fil	ter paper.	
OL08	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
	100	0.19	1-3	300	>20

// Whatman :

QUANTITATIVE ANALYTICAL FILTERS

- The quantitative or ashless filter papers are made with 100% high quality cotton linter fibres, which go through a severe chemical process. They have been washed out with a specific acid treatment and finally cleaned from impurities with demineralized water. This process allows reaching an ash content below 0.01%. These papers are used to count during demanding analysis.
 - ▼ filtraTECH's grades: QT41 | QT42 | QT43 | QT44 | QT45 | QT46.
 - Available in sheets (F), plain discs (A) or folded discs (P).

		Very fast f	iltration quantitative fi	lter paper.	•	 _
QT41	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content	// Whatman :
	84	0.2	25-30	9	<0.01	\
		Fast filt	ration quantitative filte	r paper.		
QT42	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content	// Whatman : 43
	84	0.2	20-25	27	<0.01	\
		Medium f	iltration quantitative fi	Iter paper.		 ⊑
QT43	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content	// Whatman :
	84	0.2	14-18	55	<0.01	
		a) (1)				
		Slow filt	ration quantitative filte	er paper.		 ⊆
QT44	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content	// Whatman : 44
	74	0.16	7-9	100	<0.01	<i>\</i>
		Venuslowe	filtration quantitative f	ilter naner		
10		very slow	initiation quantitative i	litter paper.		an :
QT45	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content	// Whatman :
	84	0.17	2-4	140	<0.01	

Thick very slow filtration quantitative filter paper.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content
100	0.2	2-3	195	<0.01

// Whatman:

• With additional chemical treatment, some grades of quantitative filter paper are modified and can be used for very specific applications.

▼ filtraTECH grades: QT48 | QT49.

Available in sheets (F), plain discs (A) or folded discs (P).

QT48

Magnesium-free filter paper, recommended for soil analysis.						
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content		
80	0.2	6-8	150	<0.01		

// Whatman :

OT49

Fast filtration quantitative filter paper, low fat content.

Recommended for determination of grease content in dairy products (milk, cheese).

Weight (g/m²)
DIN 53104

Thickness (mm)

Pore size (μm)

Filtration speed (sec)
DIN 53137

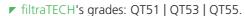
Ash content

82

0.16

8-12

20


<0.01

// Whatman : 589/4

Strengthened ashless filter

APPLICATIONS

• The strengthened range of quantitative filter papers is produced according to the same demanding process as the other grades but offers a better resistance when wet. The strengthened ashless filters are recommended for gravimetric analysis of samples or precipitates' collection.

Available in sheets (F), plain discs (A) or folded discs (P).

QT51

Quantitative filter paper (very fast filtration).				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content
84	0.2	25-30	9	<0.01

// Whatman : 541

QT53

Quantitative filter paper (medium filtration).				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content
84	0.2	14-18	55	<0.01

// Whatman : 540

QT55

	•			
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Ash content
84	0.17	2-4	195	<0.01

// Whatman : 542

GLASS / QUARTZ MICROFIBER FILTERS

Glass microfiber filter without binder

- Made with 100% borosilicated microglass fibers, these filters offer an excellent level of very small particles retention (up to 0,7 µm) and a large loading capacity. They are particularly suitable for micro-filtration of air, gases and liquids as they resist to 500 °C and are compatible to most solvents and reagents (except hydrofluoric acid).
 - ▼ filtraTECH's grades: FV21 | FV22 | FV23 | FV24 | FV25 | FV26.
 - ▼ Available in discs (A) and in sheets (F) other sizes upon request.

$\overline{}$	
2	
>	
í	

Air pollution analysis.					
	Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kPa)
	52	0.26	1.6	60	20

// Whatman : GF/A

FV22

Water analysis.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kPa)
143	0.70	1	200	50

// Whatman : GF/B

FV23

Suspended solid analysis.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kPa)
52	0.26	1.2	100	20

// Whatman : GF/C

FV24

Pre-filtration for membranes.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kPa)
120	0.53	2.7	30	20

// Whatman : GF/D

FV25

Very small particle filtration.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kPa)
75	0.45	0.7	310	50

// Whatman : GF/F

FV26

		Water control.		
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kPa)
65	0.28	1.5	60	50

// Whatman : 934 AH

Glass microfiber filter with binder

- The glass microfiber filters with binder have a lower resistance to temperature (up to 180 °C maximum). The hydrophobic grade [FV27] is suitable for air and gas analysis. At the opposite, the hydrophilic grade [FV29] is adapted to liquid filtration.
 - ▼ filtraTECH's grades: FV27 | FV29.
 - ► Available in discs (A) in sheets (F) and in rolls (R) other sizes upon request.

Air pollution and exhaust fume control.				
Weight (g/m²) DIN 53104	Thickness (mm)	Binder	Property	Retention efficiency for 0,3 µm (%)
73	0.40	Resin	Hydrophobic	99.9

// Whatman : GF10

FV29

Gravimetric analysis.				
Weight (g/m²) DIN 53104	Thickness (mm)	Binder	Property	Retention (µm)
73	0.35	Resin	hydrophilic	0.6

// Whatman : GF6

Quartz microfiber

APPLICATIONS

• The quartz microfiber filters offer the same technical specifications as glass microfiber filters without binder, except for the higher temperature resistance (up to 900 °C). They are ideally suitable for the monitoring of suspended lead particles in air, emission of chimney smokes or any other acid solution.

▼ filtraTECH's grade: FQ30.

Available in discs (A).

FQ30


Highest temperature analysis, lead particles in air.				
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Retention efficiency (%)
85	0.43	1.5	60	99.999

// Whatman : QM/A

SPECIAL PAPERS AND OTHER LABORATORY CONSUMMABLES

Bench protective paper

• Those products are made with an absorbent paper on one side and with a PE- coated film on the other. These papers give a good protection of laboratory benches against impacts, acids, toxic, corrosive and radioactive fluids.

Grade	Weight (g/m²) Cellulose	Weight (g/m²) PE	Absorption capacity (ml/m²)	// Whatman
PP125	100	25	170	Benchkote
PP210	190	35	200	
PP400	375	20	750	Benchkote Plus

PP125	Size	Packing	Code
	42x52 cm	x 100 sheets	PP125F4252
F	46x57 cm	x 50 sheets	PP125F4657L
	46x57 cm	x 100 sheets	PP125F4657
R	400 mm	x 50 m	PP125R0400
	460 mm	x 50 m	PP125R0460
	490 mm	x 50 m	PP125R0490
	600 mm	x 50 m	PP125R0600
	920 mm	x 50 m	PP125R0920

PP210	Size	Packing	Code
	46x57 cm	x 50 sheets	PP210F4657
<u>UF</u>	50x60 cm	x 50 sheets	PP210F5060
R	460 mm	x 50 m	PP210R0460
	490 mm	x 50 m	PP210R0490
	600 mm	x 50 m	PP210R0600
	920 mm	x 50 m	PP210R0920

PP400	Size	Packing	Code
F	46x57 cm	x 50 sheets	PP400F4657
R	460 mm	x 50 m	PP400R0460

Joseph paper

- The Joseph paper is a non fluffy and absorbent paper; it is ideal for cleaning and drying glass containers, tubes, flasks, microscopic plates, bottles in laboratories or hospitals.
 - **▼** filtraTECH's grade: PJ.
 - Available in plain sheets (F) or hand-folded sheets (M).

(F)	✓	
Size	Packing	Code
12x12 cm	500	PJ500F1212
15x15 cm	200	PJ200F1515
35x50 cm	500	PJ500F3550
35x50 cm	800	PJ800F3550

M	✓	
Size	Packing Code	
35x50 cm	25	PJ25M3550
35x50 cm	40	PJ40M3550
35x50 cm	50	PJ50M3550
35x50 cm	100	PJ100M3550
35x50 cm	500	PJ500M3550
35x50 cm	800	PJ800M3550

Cleaning paper

R	USE	FOOD
Size	Packing	Code
22x35 cm	450 x 6	ES045R2235A
25x30 cm	1000 x 2	ES100R2530A

Pure wadding, high quality, white, conform to food industry norms, 19 g/m²

R	USE	STANDARD
Size	Packing	Code
22x35 cm	450 x 6	ES045R2235S
25x30 cm	1000 x 2	ES100R2530S
25x30 cm	1500 x 2	ES150R2530S

Standard wadding, unbleached colour, suitable to most common applications, 19 g/m²

R	USE	INDUSTRIAL	
Size	Packing	Code	
25x30 cm	1000 x 2	ES100R2530I	
25x30 cm	1500 x 2	ES150R2530I	

Recycled wadding, orange/brown colour economical, more resistant, used in industrial fields, 22 g/m²

Holder for cleaning paper

• Depending on your needs, 2 holders in white gloss finished steel with cutting system are available for rolls (maximum width: 30 cm).

▼ filtraTECH's codes:

Stand holder : SUPPIED. Wall holder : SUPMURAL

Lens cleaning tissue

- The lens cleaning tissue is made with 100% Manila fibres. It does not scratch and is not fluffy. It is used for the cleaning of optical lens (objective, microscope, binoculars), glasses, and optical fibre filaments. We dispose of two grades OP12, the economical version, and OP13, the premium strongest grade.
 - ▼ filtraTECH's grades: OP12 | OP13 (// Whatman : 105).
 - Available in sheet (F) or in booklet (L).
 - For OP13 available references, please contact us.

(F)	✓	
Size	Packing	Code
10x15 cm	100	OP12F1015
13.5x17 cm	500	OP12F1317
13.5x19 cm	500	OP12F1319
20x30 cm	100	OP12F2030
46x57 cm	500	OP12F4657

L	✓	
Size	Packing	Code
8x10 cm	25	OP12L0810
9.5x13.5 cm	25	OP12L0913
10x15 cm	25x25	OP12L1015

Blotting pad

- Made with a very absorbent paper, the blotting pads (73 g/m²) are perfect to dry excessive liquids in microscopic preparations.
 - ▼ filtraTECH's code: SL73L0310.
 - ► Available in booklet of 50 sheets of 37x100 mm.

Weighing paper

- The weighing papers bare a satin surface and are used to weigh all types of substances (beet mash, powders, liquids,...).
 - ▼ filtraTECH's grades: PE25 (easily crushable, recommended for grated beet weighing).
 PE45 (satin appearance, wet-strength resistance).
 - Available in sheets (F) in packs of 250 or 1000 sheets.

(F)	✓		
Size	Packing	Weight	Code
9.5x11 cm	250	45 g/m²	PE45F0911
10x10 cm	250	45 g/m²	PE45F1010
15x15 cm	250	45 g/m²	PE45F1515
10x10 cm	1000	45 g/m²	PE45F1010M
10x10 cm	1000	25 g/m²	PE25F1010

Weighing boat

- Made in parchment paper with a low nitrogen content, the weighing boats enable to weigh and transport easily various substances such as viscous products, pasty products or powders.
 - ▼ filtraTECH's code: NP581010.
 - ► Available in boxes of 100 units of 58x10x10 mm.

Phase separating paper

- Hydrophobic with silicone impregnation, the phase separating paper is used for the separation of aqueous solutions from organic solutions. It allows a quick separation of elements and replaces the use of a separating funnel.
 - **▼** filtraTECH's grade: FS92.
 - ► Available in plain discs (A) or folded discs (P) in box of 100 units.

A	✓
Ø Diameter	Code
70 mm	FS92A0070
90 mm	FS92A0090
110 mm	FS92A0110
125 mm	FS92A0125
150 mm	FS92A0150
185 mm	FS92A0185
210 mm	FS92A0210
240 mm	FS92A0240

Weight (g/m²)	Thickness (mm)	Filtration speed (sec)	// Whatman
85	0.17	25	1PS

Phosphate-free filter paper

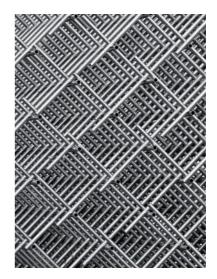
• In order to preserve the results of soil analysis from phosphate contamination issued from the paper itself, we suggest you use phosphate-free filter paper. 2 grades are available for the determination of potassium and phosphate levels (Egner, Riehm & Lederle method), sugar ratio post-determination or filtration of fine crystalline sulphide precipitates in the analysis of iron.

(Υ)	
(٦	
į	1	1	
L	1	-	

I	Phosphate-free filter pa	per, medium / fast flow	
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137
85	0.2	8-12	22

FS94

	Phosphate-free filter	paper, very slow flow.	
Weight (g/m²) DIN 53104	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137
80	0.17	1-2	1500



Nitrogen free filter paper

- These filters contain a very low level of nitrogen and offer a slow filtration speed. They are suitable for the determination of the nitrogen content in steel and iron rough, or even glycaemia according to Hagedorn-Jensen.
 - ▼ filtraTECH's grade: FS96.
 - Available in sheets (F), plain discs (A) or folded discs (P) in box of 100 units.

A	✓
Ø Diameter	Code
70 mm	FS96A0070
90 mm	FS96A0090
110 mm	FS96A0110
125 mm	FS96A0125
150 mm	FS96A0150

P	✓
Ø Diameter	Code
185 mm	FS96P0185

Weight (g/m²	²) Thickness (mi	m) Filtration speed (sec)	Nitrogen content	// Whatman
85	0.17	650	~0.05 mg / Disc Ø 110 mm	2095

Black filter paper

- This filter paper is stained with a sulphured colouring and is used to reveal the particles of bright colours such as fluorine, silicon detection, mycelium in cultivated mushrooms, etc.
 - **▼** filtraTECH's grade: FS98.
 - ✓ Available in plain discs (A) in boxes of 100 units.

A	✓
Ø Diameter	Code
55 mm	FS98A0055
70 mm	FS98A0070
90 mm	FS98A0090
110 mm	FS98A0110
125 mm	FS98A0125
150 mm	FS98A0150
185 mm	FS98A0185
210 mm	FS98A0210
240 mm	FS98A0240
270 mm	FS98A0270

Weight (g/m²)	Thickness (mm)	Filtration speed (sec)	// Whatman
85	0.17	45	551

Activated carbon filter paper

- This paper contains about 35% of high quality activated carbon and it is recommended for a use in various fields in both laboratories (clarification and brightening of duff and dark urines) and in industry (filtration of galvanic baths, clarification of coloured liquids).
 - **▼** filtraTECH's grade: FS99. (// Whatman : 509).
 - ► Available in sheets (F) or in plain discs (A) in boxes of 100 units.

A	✓
Ø Diameter	Code
55 mm	FS99A0055
70 mm	FS99A0070
90 mm	FS99A0090
110 mm	FS99A0110
125 mm	FS99A0125
140 mm	FS99A0140
150 mm	FS99A0150
185 mm	FS99A0185
210 mm	FS99A0210
240 mm	FS99A0240

(F)	✓
Size	Code
60x60 cm	FS99F6060

A	✓
Ø Diameter	Code
195/61 mm	FS99A195/61
258/40 mm	FS99A258/40
456/100 mm	FS99A456/100

Test seed paper

• Due to their absorbent power, the seed papers are used to control the germination of seed samples because they retain enough water and they prevent the penetration of the roots in the paper.

These papers are made from the highest quality of wood fibres to avoid any contact with toxic parts (bacteria, sporis...).

- **▼** filtraTECH's grades: PG110 | PG160.
- ✓ Available in white colour or in grey colour ●.
- Available in sheets (F), plain discs (A) or in pleated strips (P).

	_		
	9		
	•		
	`	Ξ.	
(ַ	,	
ľ	a 1		

Fine seeds.					
Weight (g/m²) DIN 53104	Thickness (mm)	(F)	A	P	
110	0.24	Х	Х	0	

\subseteq	36
Ф	23
ţ	6
Ö	4/3
₹	$\overline{}$
	30
\approx	

5	2	2	
·	_	_	
(֡֡֡֡֡֡֡֡֡֡֡֡֜֜֜֡֡֡֜֜֜֜֡֡֡֡֜֜֜֡֡֡֡֡֡֜֜֜֜֡֡֡֡)	
-	-	-	

Medium seeds.				
Weight (g/m²) DIN 53104	Thickness (mm)	(F)	A	P
160	0.38	0	0	Х

// Whatman : 181

Brewery industry filter paper

- This embossed filter paper 75 g/m² is ideally used for any sample preparation and for the clarification of malt analysis in breweries.
 - **▼** filtraTECH's grade: FS97.
 - ► Available in plain discs (A) or folded discs (P) in boxes of 100 units.

A	✓
Ø Diameter	Code
150 mm	FS97A0150
185 mm	FS97A0185
240 mm	FS97A0240
320 mm	FS97A0320

P	✓	
Ø Diameter	Code	
240 mm	FS97P0240	
270 mm	FS97P0270	
320 mm	FS97P0320	

Weight (g/m²)	Thickness (mm)	Filtration speed (sec)	// Whatman
75	0.17	110	2555

Sugar industry filter paper

- Usable in the food industry, the filter papers for the sugar industry offer a fast filtration or a very fast filtration for the clarification of beetroot juice or cane sugar juice (for efficient saccharimetric tests of after lead acetate addition).
 - **▼** filtraTECH's grade: FS90 (64 g/m²), smooth surface, for beetroot.
 - ✓ Available in sheets (F) in pack of 500 sheets and pleated in 4 discs (C) in pack of 250 units.

(F)	✓	
Size	Code	
60x60 cm	FS90F6060D	

- Ø Diameter
 Code

 210 mm
 FS90C0210

 215 mm
 FS90C0215

 225 mm
 FS90C0225

 250 mm
 FS90C0250
- ✓ filtraTECH's grade: FS91 (64 g/m²), creped surface, for clarification to sugar cane, fast filtration (// Whatman : 91),
- Available in plain discs (A), folded discs (P) in box of 100 units, or in sheets (F) in pack of 500 units.

A	✓
Ø Diameter	Code
110 mm	FS91A0110
125 mm	FS91A0125
140 mm	FS91A0140
150 mm	FS91A0150
185 mm	FS91A0185
240 mm	FS91A0240

(F)	✓	
Size	Code	
58x58 cm	FS91F5858D	

Non woven filter & filter - card

- The non woven filters of our range can be used for sediment determination in dairy products (food contact approved). They come in different sizes and shapes depending on market habits.
 - ▼ filtraTECH's grades: NT110 | NT130 (// Whatman : 0048).
 - Most frequent diameters: 32, 35, 47 mm (in boxes of 1000 units) and size 50x50 mm (in boxes of 500 units).
- The filter-cards (NT110 non woven filter stuck on a printed cardboard for archives) are used in food industry laboratories, among others in milk powder analysis.

▼ filtraTECH's grades:

Code CF110N57155 used for determination of scorched particles in milk powder according to ADMI method. (in boxes of 500 units).

Code CF110N4580 used for determination of sediments in milk powder, dairy products. (in boxes of 500 units).

Grade	Weight (g/m²)	Thickness (mm)	Pore size (µm)	Water permeability (L/m²/mm)	Air permeability (L/m²/mm)
NT110	110	0.70	50	400	2200
NT130	130	1.20	45	370	1750

GRID OF RESULT INTERPRETATION (WEIGHT OF SCORCHED PARTICLES IN MILK POWDER).

American Dairy Products Institute

Scorched particle standards for dry milks

7 CFR 58-2676

A - 7.5 mg

B - 15 mg

C - 22,5 mg

D - 32,5 mg

Antibiotic assays

- Made with 100% cotton linters, this very absorbent paper (270 g/m²) is suitable to identify the agents which are the cause of infectious diseases and to test the resistance of pathogenic organisms.
 - **▼** filtraTECH's grade: PA320. (// Whatman : AA).
 - ► Available in plain discs (A) packs of 1000 units.
 - ✓ Size: 6 mm | 9 mm | 12 mm | 12.7 mm | 25 mm.

Cyto-centrifugal paper

- This thick paper of 430 g/m² has been developed especially for Shandon and Bayer cytological centrifuges.
 - ▼ filtraTECH's grade: CY430.
 - ► Available in sheets (F) in boxes of 200 units.

(F)	✓	
Size	Nb. holes	Code
25x62 mm	1 hole	CY430F2562/1T
25x77 mm	2 holes	CY430F2577/2T

Sterilization paper

- According EN 868-2 norm, the sterilization paper, creped surface, 60 g/m², is used to wrap medical clothes, surgical instruments and other articles that require steam, gas and gamma-ray sterilization.
 - **▼** filtraTECH's grade: PS60.
 - Available in sheets (F).

F	✓	Colour: white	Colour: green		
Size	Packing	Code	Code		
30x30 cm	2000	PS60F3030B	_		
50x50 cm	500	PS60F5050B	PS60F5050V		
60x60 cm	500	PS60F6060B			
60x90 cm	250	PS60F6090B			
75x75 cm	250	PS60F7575B			
90x90 cm	250	PS60F9090B	_		
100x100 cm	250	PS60F100100B	PS60F100100V		
120x120 cm	100	PS60F120120B	_		

Weight (g/m²)	Thickness (mm)	Water absorption (sec)	Permeability to air (μm)
60	0,16	90	42.8

Chromatography paper

• Produced with high quality cotton linters, the chromatography papers allow absorbing samples more or less important depending on the thickness of the grade.

For the finest filtration results, filtraTECH recommend to use grade CH51 for routine and simple analysis and grade CH58 for electrophoresis and chromatographic works.

- ▶ filtraTECH's grades: CH51 | CH53 | CH58 | CH59.
- Available in sheets (F) or in rolls (R).

180

Routine works in o	chromatography, determination	of the presence of malic acid in wine.		
Weight (g/m²) Din 53104	Thickness (mm)	Capillary rise (mm/30 min)		
90	0.20	120-130		

// Whatman : 1CHR

CH53

Fir	nest analysis, determination of co	mponents by elution.
Weight (g/m²) Din 53104	Thickness (mm)	Capillary rise (mm/30 min)
90	0.18	90-100

// Whatman : 2CHR

CH58

	Electrophoresis works, highly charged solution chromatography, separation of organic compounds, separation and identification of additives in food.								
Weight (g/m²) Din 53104	Thickness (mm)	Capillary rise (mm/30 min)							

90-100

// Whatman : 3MMCHR

CH59

Electrophoresis of thicker particles, protein analysis in serums.									
Weight (g/m²) Din 53104	Thickness (mm)	Capillary rise (mm/30 min)							
270	0.7	130-140							

0.36

// Whatman : 17CHR

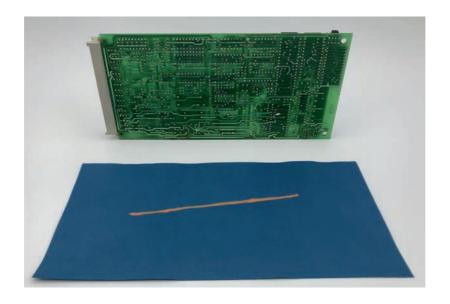
Grade	(F)	R				
			Size	Packing	Code	
	✓	_	10x30 cm	100	CH51F1030	
	✓	_	20x20 cm	100	CH51F2020	
	✓	_	46x57 cm	100	CH51F4657	
CH51	✓	_	58x60 cm	100	CH51F5860	
	_	✓	L = 50 mm	100 m	CH51R0050	
	_	✓	L = 100 mm	100 m	CH51R0100	
	_	✓	L = 150 mm	100 m	CH51R0150	
CH53	✓	_	46x57 cm	100	CH53F4657	
СПЭЭ	✓ −		58x60 cm	100	CH53F5860	
CH58	✓ -		20x20 cm	100	CH58F2020	
CHOO	✓	_	46x57 cm	100	CH58F4657	
CH59	✓	_	58x60 cm	25	CH59F5860	

Blotting paper

• The blotting papers are used for their great absorption qualities; they are suitable for the Cobb method (determination of water absorption in the production of sized paper) or for the pulp industry (sheet formation testing).

▼ filtraTECH's grades:

PB190 (190 g/m²) | PB255 (255 g/m²).


Available in sheets (F).

(F)	✓	x 100 sheets
Size	Absorption	Code
15x15 cm	300 g/m²	PB190F1515
15x30 cm	300 g/m²	PB190F1530
20x20 cm	300 g/m²	PB190F2020
22x22 cm	300 g/m²	PB190F2222
25x25 cm	300 g/m²	PB190F2525
25x30 cm	300 g/m²	PB190F2530
50x50 cm	300 g/m²	PB190F5050
50x65 cm	300 g/m²	PB190F5065
25x100 cm	300 g/m²	PB190F25100
27x100 cm	300 g/m²	PB190F27100

(F)	✓	x 100 sheets
Size	Absorption	Code
12x12 cm	490 g/m²	PB255F1212
15x15 cm	490 g/m²	PB255F1515
16x16 cm	490 g/m²	PB255F1616
17x17 cm	490 g/m²	PB255F1717
20x20 cm	490 g/m²	PB255F2020
22x22 cm	490 g/m²	PB255F2222
25x25 cm	490 g/m²	PB255F2525
25x30 cm	490 g/m²	PB255F2530
30x30 cm	490 g/m²	PB255F3030
50x50 cm	490 g/m²	PB255F5050
50x65 cm	490 g/m²	PB255F5065
68x68 cm	490 g/m²	PB255F6868
25x100 cm	490 g/m²	PB255F25100
27x100 cm	490 g/m²	PB255F27100

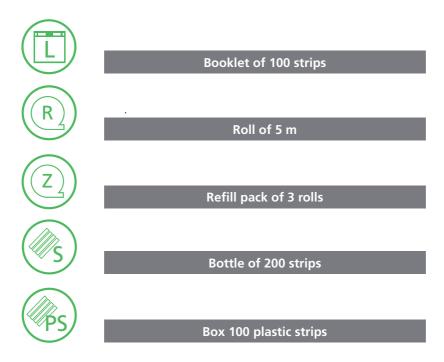
Printed circuit board control paper

- During the electronic card cleaning process the test paper is used to check that the fluid has been sprayed correctly on the entire card. The paper thus turns from blue to yellow (indication of the areas of application of the acid on the printed circuit)..
 - **▼** Grade : PH055.
 - Available in sheets of 25,4x30 cm (packs of 100 sheets), code: PH055F2530. Other sizes and shapes upon request.

Cellulose stoppers

• Economical and hygienic, the cellusose stoppers are efficient to seal flasks, test tubes, Erlenmeyers and various bottles in laboratories.

Made with pure cellulose fibres, they are permeable to air, sterilizable to 200 $^{\circ}\text{C}$. Single use recommended.



Size	Packing	Code
5x9x30 mm	1000	BOC050930M
6x8.5x11 mm	1000	BOC060811M
7x11x30 mm	1000	BOC071130M
8x14x32 mm	1000	BOC081432M
9x12x30 mm	1000	BOC091230M
10x18x37 mm	1000	BOC101837M
11x16x32 mm	1000	BOC111632M
12x17x37 mm	1000	BOC121737M
12x18x42 mm	1000	BOC121842M
12x20x32 mm	1000	BOC122032M
13x18x32 mm	1000	BOC131832M
15x19x30 mm	1000	BOC151930M
16x20x30 mm	1000	BOC162030M
17x21x38 mm	1000	BOC172138M
18x22x30 mm	1000	BOC182230M
19x24x30 mm	1000	BOC192430M
20x23x41 mm	500	BOC202341D
23x28x30 mm	500	BOC232830D
24x28x43 mm	200	BOC242843Q
25x34x60 mm	200	BOC253460Q
26x36x60 mm	200	BOC263660Q
28x33x63 mm	200	BOC283363Q
29x38x60 mm	200	BOC293860Q
30x40x40 mm	200	BOC304040Q
30x42x55 mm	100	BOC304255C
33x37x63 mm	100	BOC333763C
35x36x40 mm	200	BOC353640Q
35x40x60 mm	100	BOC354060C
35x46x60 mm	100	BOC354660C
37x50x50 mm	100	BOC375050C
39x61x63 mm	50	BOC396163L
40x58x65 mm	50	BOC405865L
58x65x70 mm	25	BOC586570W

INDICATOR PAPERS

- ▶ Roll (R): roll of 5 m of reagent paper, most frequently used product; sold with a non-slipping dispenser, easily cut with its small saw, packed in an aluminum foil to protect efficiently the reagent paper from air and light.
- ▶ Refill pack (Z): pack of 3 rolls of 5m each, hermetic protection of each roll to preserve its qualitaties, compatible with dispenser sold with rolls (with one extra colour scale).
- ▶ Booklet (L): precut strips of sufficient length for your analysis, economic and convenient to use.
- ▶ Bottle (S): precut strips protected in strong ergonomic and hermetic bottle (tamper collar).

pH indicator paper

• The pH indicator papers are impregnated with one or several coloured indicators solutions which allow a quick and precise reading of pH of liquid solutions. You have to soak a piece of pH paper into the solution to be tested and compare it to the colour of the printed colorimetric scale.

Intervals		pH value scale per grade												Z	L	////s
0-10	0	1	2	3	4	5	6	7	8	9	10	_	PH010R	PH010Z	PH010L	PH010S
0.5-5	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	_	_	PH055R	PH055Z	PH055L	PH055S
1-11	1	2	3	4	5	6	7	8	9	10	11	_	PH111R	PH111Z	PH111L	PH111S
1-14	1	2	3	4	5	6	7	8	9	10	12	14	PH114R	PH114Z	PH114L	PH114S
3.8-5.4	3.8	4.1	4.4	4.6	4.8	5.1	5.4	_	_	_	_	_	PH354R	_	PH354L	PH354S
4.0-7.0	4	4.5	5	5.5	6	6.5	7	_	_	_	_	_	PH470R	_	_	PH470S
5.5-9.0	5.5	6	6.5	7	7.5	8	8.5	9	_	_	_	_	PH590R	PH590Z	PH590L	PH590S
6.4-8.0	6.4	6.7	7	7.2	7.5	7.7	8	_	_	_	_	_	PH680R	PH680Z	PH680L	PH680S
6.5-10	6.5	7	7.5	8	8.5	9	9.5	10	_	_	_	_	PH610R	_	_	_
9.5-13	9.5	10	10.5	11	11.5	12	12.5	13	_	_	_	_	PH913R	PH913Z	PH913L	PH913S

Reagent paper

• For a quick determination of pH value, the reagent papers are available in rolls of 5 m (R), in refill pack of 3 rolls (Z), in booklet of 100 strips (L) or in box of 200 strips (S).

Туре	Use	Colours	R	Z	<i>M</i> / _S	L
Blue litmus		acid neutral basic	PHTRSOLBR	PHTRSOLBZ	PHTRSOLBS	PHTRSOLBL
Neutral litmus	General control of acid or alkaline solutions	acid ← neutral → basic	PHTRSOLNR	_	PHTRSOLNS	PHTRSOLNL
Red litmus	solutions	acid neutral basic	PHTRSOLRR	_	PHTRSOLRS	PHTRSOLRL
Potassium ioded starched	Detection of nitrites in free chlorine	negative test — positive test	PHIOPOTAR	PHIOPOTAZ	PHIOPOTAS	PHIOPOTAL
Red congo	Control of acid reactions	basic 3.0 <ph<5.2 acid<="" td=""><td>PHCONGOR</td><td>_</td><td>PHCONGOS</td><td>PHCONGOL</td></ph<5.2>	PHCONGOR	_	PHCONGOS	PHCONGOL
Phenolphtalein	Control of neutrality	pH < 8.4 → pH > 8.4	PHPHENOLR	_	PHPHENOLS	_
Lead acetate	Detection of sulphuric hydrogene	→ H ₂ S presence	PHACEPLOMR	_	PHACEPLOMS	PHACEPLOML

Non-bleeding pH test strip

• For a greater reliability on results and an easier handling, it is recommended to use pH plastic strips. Thanks to its stiffness, the strip can remain dipped into the solution while waiting to obtain the final result. This operation cannot contaminate the sample since the indicators are fixed to cellulose fibres and do not bleed. The result is more accurate because of the multiple result zones on the strips and chart.

Available in boxes of 100 plastic strips (PS).

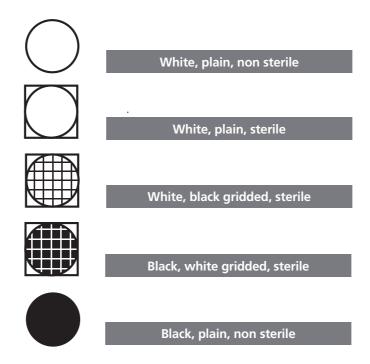
Intervals		pH value scale per grade											Nb of coloured zones	MPS			
0.5-5	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	_	_	_	_	_	2	PH055PS
5.5-9	5.5	6	6.5	7	7.5	8	8.5	9	_	_	_	_	_	_	_	2	PH590PS
9.5-13	9.5	10	10.5	11	11.5	12	12.5	13	_	_	_	_	_	_	_	2	PH913PS
0-14	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	4	PH114PS
0-6	0	1	2	3	4	5	6	_	_	_	_	_	_	_	_	2	PH060PS
7-14	7	7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13	13.5	14	2	PH714PS
4-5-9	4.5	5.0	5.5	5.75	6.0	6.25	6.5	6.75	7.0	7.25	7.5	8.0	8.5	9	_	2	PHDIAG

Liquid pH pack

• To easily determine the acidity of your solutions, we developed a pack with pH liquid indicator.

Depending on the pH value of your solution (value between 4.0 and 8.0, you will have to adjust your solution either with sulphuric acid (pH $^{-}$), or sodium carbonate (pH $^{+}$).

For a use in hydroponic farming, it is recommended to obtain a pH value between 5.5 and 6.5.


- ▶ Reference: PH480K.
- ► Included in the pack: a 30 ml bottle of reactive solution (~ 200 tests), with a colour scale and an empty flask to make the tests.

MEMBRANES FILTERS

CA – Cellulose acetate

- The CA membranes are produced with pure cellulose acetate which is modified, and have a high filtration efficiency. Naturally hydrophilic, they present a good thermic stability and a weak fixation of proteins. They are suitable for biological, aqueous samples and for filtration of proteins or enzymes.
 - ▼ Other diameters upon request (ø 37 mm, 142 mm, 293 mm).

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm	0.65 μm	0.80 μm	1.20 µm	5.00 μm
Water flow (mL/mn/cm²@10psi)	9-31	33-46	45-55	85-102	110-125	280-320
Bubble point (psi)	47-71	32-36	25-32	19-22	16-19	8-10

	Quantity	0.22 μm	0.45 μm	0.65 μm	0.80 μm	1.2 µm	5.0 µm
Ø 25 mm	100	MF025CA022	MF025CA045	MF025CA065	MF025CA080	MF025CA120	MF025CA500
Ø 47 mm	100	MF047CA022	MF047CA045	MF047CA065	MF047CA080	MF047CA120	MF047CA500
Ø 50 mm	100	MF050CA022	MF050CA045	MF050CA065	MF050CA080	MF050CA120	MF050CA500
Ø 90 mm	100	MF090CA022	MF090CA045	MF090CA065	MF090CA080	MF090CA120	MF090CA500

	0.22 μm	0.45 μm
Ø 47 mm	MF047CA022S	MF047CA045S

MCE – Mixed cellulose esters

- The MCE membranes are made with cellulose acetate and cellulose nitrate fibres, they are naturally hydrophilic, mechanically stable and have a high loading capacity. They are suitable for microbiological analysis, for colonies counting or for pre-filtration and clarification of samples.
 - ▼ Other diameters upon request (ø 37 mm, 142 mm, 293 mm).

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm	0.65 μm	0.80 µm	1.20 µm	3.0 µm	5.0 μm	8.0 µm
Water flow (mL/mn/cm²@10psi)	12-18	38-71	45-58	87-135	85-121	210-320	280-350	300-360
Bubble point (psi)	52-65	29-40	28-33	16-19	12-14	8-11	7-10	7-8

	Quantity	0.22 μm	0.45 μm	0.65 μm	0.80 μm	1.2 µm	3.0 µm	5.0 μm	8.0 µm
Ø 13 mm	200	MF013ME022	MF013ME045	MF013ME065	MF013ME080	MF013ME120	MF013ME300	MF013ME500	MF013ME800
Ø 25 mm	100	MF025ME022	MF025ME045	MF025ME065	MF025ME080	MF025ME120	MF025ME300	MF025ME500	MF025ME800
Ø 47 mm	100	MF047ME022	MF047ME045	MF047ME065	MF047ME080	MF047ME120	MF047ME300	MF047ME500	MF047ME800
Ø 50 mm	100	MF050ME022	MF050ME045	MF050ME065	MF050ME080	MF050ME120	MF050ME300	MF050ME500	MF050ME800
Ø 90 mm	100	MF090ME022	MF090ME045	MF090ME065	MF090ME080	MF090ME120	MF090ME300	MF090ME500	MF090ME800

	Quantity	0.45 μm	0.80 µm
Ø 47 mm	100	MF047ME045S	MF047ME080S

	Quantity	0.45 μm	0.80 μm
Ø 47 mm	100	MF047ME045B	MF047ME080B

	Quantity	0.22 μm	0.45 μm	0.80 µm
Ø 47 mm	100	MF047ME022GS	MF047ME045GS	MF047ME080GS

	Quantity	0.45 μm	0.80 µm	8.0 µm
Ø 47 mm	100	MF047ME045BGS	MF047ME080BGS	MF047ME800BGS

MCE – Continuous membranes

- To fully complete the range of MCE membrane filters, filtraTECH also offer sterile gridded continuous membranes.
 - Available in box of 150 units.

	Quantity	0.22 μm	0.45 μm	0.80 µm
Ø 47 mm	150	MF047ME022GS/R	MF047ME045GS/R	MF047ME080GS/R

	Quantity	0.45 μm
Ø 47 mm	150	MF047ME045BGS/R

Membrane dispenser

• To easily open the plastic wrapping and delicately extract the membrane from its shell without contamination, you can buy a stainless steel membrane dispenser. Robust, practical and easy to use, this mechanical dispenser will be a great help for all your manipulations to preserve the sterility and quality of the membranes.

▼ filtraTECH's reference: MFDISTRI.

Height: 240 mm. Width: 140 mm. Depth: 225 mm.

Weight empty: 4,7 kg. Other: moulded carrying handle.

NYL - Polyamide

- Naturally hydrophilic, nylon membranes are used for aqueous samples, alkaline or organic filtration of HPLC samples for their chemical resistance to alkaline solutions and solvents.
 - ▼ Other diameters upon request (ø 37 mm, 142 mm, 293 mm).

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm	0.80 µm	1.0 μm	3.0 μm	5.0 µm
Water flow (mL/mn/cm²@10psi)	4-6	9-10	45-55	55-65	80-90	135-150
Bubble point (psi)	46-56	30-32	10-15	15-18	8-9	5-6

	Quantity	0.22 μm	0.45 μm	0.80 μm	1.0 µm	3.0 µm	5.0 μm
Ø 13 mm	200	MF013NY022	MF013NY045	MF013NY080	MF013NY100	MF013NY300	MF013NY500
Ø 25 mm	100	MF025NY022	MF025NY045	MF025NY080	MF025NY100	MF025NY300	MF025NY500
Ø 47 mm	100	MF047NY022	MF047NY045	MF047NY080	MF047NY100	MF047NY300	MF047NY500
Ø 90 mm	100	MF090NY022	MF090NY045	MF090NY080	MF090NY100	MF090NY300	MF090NY500

PC – Polycarbonate

- Hydrophilic and chemically resistant to organic solvents, the PC membranes are more efficient in term of flow rate due to their asymmetrical structure. They present a good chemical and thermic stability and are adapted to the electronic microscope analysis.
 - ▼ Other dimensions and pore size upon request.

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm
Water flow (mL/mn/cm²@10psi)	10	33

	Quantity	0.22 μm	0.45 μm
Ø 25 mm	100	MF025PC022	MF025PC045
Ø 47 mm	100	MF047PC022	MF047PC045

PES – Polyethersulfone

- The highly asymmetrical pore structure of our PES membranes offers an excellent loading capacity and high flow rate. Naturally hydrophilic, they are made with polyethersulfone polymer and are designed to remove particles during general filtration and their low protein and drug binding characteristics make them ideally suited for life science applications.
 - ▼ Other dimensions and pore size upon request.

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm
Water flow (mL/mn/cm²@10psi)	11-16	30-48
Bubble point (psi)	51-65	35-53

	Quantity	0.22 μm	0.45 μm
Ø 25 mm	100	MF025PE022	MF025PE045
Ø 47 mm	100	MF047PE022	MF047PE045

PP – Polypropylene

- Hydrophobic, polypropylene membranes show an excellent chemical compatibility with most organic solvents but can only resist temperatures below 50°C. They are specifically recommended for ionic chromatography.
 - ▼ Other dimensions and pore size upon request.

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm
Water flow (mL/mn/cm²@10psi)	250-300	300-450

	Quantity	0.22 μm	0.45 μm
Ø 25 mm	100	MF025PP022	MF025PP045
Ø 47 mm	100	MF047PP022	MF047PP045
Ø 90 mm	100	MF090PP022	MF090PP045

PTFE – Polytetra-Fluorethylene

• Naturally hydrophobic, the PTFE membranes are made with polytetra-fluroethylene laminated with a PP layer. They can be used in air and gas filtration or for chemically aggressive or acid for samples. For the filtration of aqueous solutions, you should wet them first with isopropanol.

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm	1.0 μm	5.0 μm
Water flow (mL/mn/cm²@10psi)	8-14	15-29	75-90	447-625
Bubble point (psi)	16-25	14-19	8-9	_

	Quantity	0.22 μm	0.45 μm	1.0 µm	5.0 µm
Ø 13 mm	200	MF013PT022	MF013PT045	MF013PT100	MF013PT500
Ø 25 mm	100	MF025PT022	MF025PT045	MF025PT100	MF025PT500
Ø 47 mm	100	MF047PT022	MF047PT045	MF047PT100	MF047PT500
Ø 90 mm	100	MF090PT022	MF090PT045	MF090PT100	MF090PT500

RC – Regenerated cellulose

• RC membrane filters are hydrophilic and show a high chemical resistance to all solvents. They are very convenient for solvent filtration.

Pore size (µm) [for ø 47 mm]	0.22 μm	0.45 μm
Water flow (mL/mn/cm²@10psi)	9-11	30-48
Bubble point (psi)	19-22	10-15

	Quantity	0.22 μm	0.45 μm
Ø 25 mm	100	MF025RC022	MF025RC045
Ø 47 mm	100	MF047RC022	MF047RC045

FILTRATION DEVICES

Glass solvent filters

- Entirely made with high quality extra hard glass, this apparatus is suitable for removal of particles in solvents and for purification of HPLC solutions. Suitable for membranes of size 47 ou 50 mm.
 - ✓ Included: funnel of 300 ml, filter support in Pyrex fritted glass (10 µm), a flask of 1000 ml, aluminium clamp.
 - ✓ filtraTECH codes: Grinding type: AP47G300R. Stopper type: AP47G300B.

Disposable microfiltration unit

• To avoid contamination during the filtration of cell culture media, aqueous solutions or biological fluids, it is recommended to work with a disposable vacuum filtration unit.

In order to guarantee the sterility of this apparel and the integrity of your analysis, the disposable filtration system is made for a single use only and is composed of 2 separate parts: the top filtering device in crystal polystyrene which comes with an icorporated membrane filter and a connection for vacuum

pump and the bottom receptacle for your filtrate retention (the bottle with its screw cap can be re-used).

- All Available series of membrane filter: PES, MCE, Nylon, PVDF; pore size: 0.22 μ m, 0.45 μ m and capacity: 150 ml, 250 ml, 500 ml et 1000 ml (in boxes of 12 units, sterile).
- ▼ The top-filtering device (BTF) can be sold as replacement parts (in boxes of 24, sterile).

MEMBRANE TYPE : PES				
Capacity (ml)	Code			
150	UF015PE22S			
250 500 1000 150	UF025PE22S			
500	UF050PE22S			
1000	UF100PE22S			
150	UF015PE45S			
150 250 500 1000	UF025PE45S			
500	UF050PE45S			
1000	UF100PE45S			
	Capacity (ml) 150 250 500 1000 150 250 500			

MEMBRANE TYPE : MCE				
Pore size (µm)	Capacity (ml)	Code		
	150	UF015ME22S		
0.22	250	UF025ME22S		
0.22	150 250 500 1000 150 250	UF050ME22S		
		UF100ME22S		
	150	UF015ME45S		
0.45	250	UF025ME45S		
0.45	500	UF050ME45S		
	1000	UF100ME45S		

MEMBRANE TYPE: NYLON				
Pore size (µm)	Capacity (ml)	Code		
	150	UF015NY22S		
0.22	250	UF025NY22S		
0.22	500	UF050NY22S		
	1000	UF100NY22S		
	150	UF015NY45S		
0.45	250	UF025NY45S		
0.45	500	UF050NY45S		
	1000	UF100NY45S		

MEMBRANE TYPE : PVDF				
Capacity (ml)	Code			
150	UF015PV22S			
500	UF025PV22S			
500	UF050PV22S			
1000	UF100PV22S			
150	UF015PV45S			
250 500 1000	UF025PV45S			
500	UF050PV45S			
1000	UF100PV45S			
	Capacity (ml) 150 250 500 1000 150 250 500			

Vacuum pump

• The vacuum pump is made of aluminium alloy and can be used together with a glass solvent filter or with a multiple vacuum filtration system.

- Pumping speed: 30L/min.
- Motor power: 180 W.
- Noise: < 50 db.
- Weight: 7.5 kg.
- Size: 25x13.5x21 cm.

▼ filtraTECH code: POMPE200.

SS316 multiple-branch manifold for vacuum system

- This filtration system is completely made in SS316L, it is particularly designed for the filtration of several samples at the same time. Available in 2 versions: 3 or 6 branches. Suitable for membranes of size 47 or 50 mm.
 - ▼ Included:
 - SS316L funnels of 300 ml.
 - SS316L filter support.
 - Aluminium clamps.
 - SS316L valves.
 - ▼ filtraTECH codes:

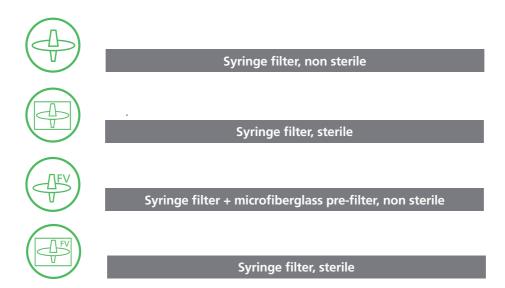
3 branches: RF3SS300. 6 branches: RF6SS300.

Spare parts available

individually.

Contact us for more

information.



- A version equipped with a manometer is also available (upon request only). This system is sold only with 3 funnels of 250 ml each.
 - ▼ filtraTECH code: RF3SS250M.

SYRINGE FILTERS

• Our range of syringe filters come in 2 pore sizes: 0.22 or 0.45 µm. Each unit is carefully marked with both membrane type and pore size to avoid any confusion in your laboratory. The shell is made of polypropylene and is moulded with sample distribution rings in order to obtain an even distribution of the sample and hence a higher flow rate. The PP housing is assembled by injected molding; this production method gives the opportunity of inserting a colored ring for an easy recognition of the syringe filter in the laboratory (except for glass microfiber syringe filters: ultrasonically welded PP housing) and of reinforcing the body robustness during filtration process (minimized risk of opening under the syringe pressure). For sterilized goods, we use gamma-ray methods.

CA – Cellulose acetate

- The CA syringe filters have a hydrophilic membrane that allows the filtration of aqueous solutions, especially in biology. The sterile syringe filters are suitable for cell culture applications, for proteins or enzymes samples
 - ▶ Chemical compatibility: pH 3-7

Pore size (µm) [for ø 25mm]	0.22 μm	0.45 μm	0.80 μm	1.20 µm	5.0 μm
Water flow (mL/mn@10psi)	50-65	92-116	220-260	250-300	468-518
Bubble point (psi)	41-51	36-39	15-18	11-14	6-7

CA 0.22 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13CA22C	SF13CA22M
1	25 mm	SF25CA22L	_	SF25CA22M
V	30 mm	SF30CA22L	_	SF30CA22M
	33 mm	SF33CA22L	_	SF33CA22M
ŬFV V	25 mm	SF25CAF22L	_	SF25CAF22M

CA 0.22 µm sterile	Ø Diameter	x50
	13 mm	SF13CA22S
	25 mm	SF25CA22S
V	30 mm	SF30CA22S
	33 mm	SF33CA22S
FV	25 mm	SF25CAF22S

CA 0.45 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13CA45C	SF13CA45M
1	25 mm	SF25CA45L	_	SF25CA45M
V	30 mm	SF30CA45L	_	SF30CA45M
	33 mm	SF33CA45L	_	SF33CA45M
ŬFV V	25 mm	SF25CAF45L	<u></u>	SF25CAF45M

CA 0.45 µm sterile	Ø Diameter	x50
	13 mm	SF13CA45S
	25 mm	SF25CA45S
	30 mm	SF30CA45S
	33 mm	SF33CA45S
₫FV V	25 mm	SF25CAF45S

CA 0.80 µm non sterile	Ø Diameter	x50	x100	x1000
4	25 mm	SF25CA80L	SF25CA80C	SF25CA80M

CA 1.20 µm non sterile	Ø Diameter	x50	x100	x1000
4	25 mm	SF25CA120L	SF25CA120C	SF25CA120M

CA 5.0 µm non sterile	Ø Diameter	x50	x100	x1000
4	25 mm	SF25CA500L	_	SF25CA500M
	33 mm	SF33CA500L	_	SF33CA500M

FV – Glass microfiber

- The FV syringe filters present an excellent chemical compatibility and resist to organic solvents and strong acids. They are used in pre-filtration of viscous solutions or for filtration of separation of cells media before sterilization
 - ▼ Chemical compatibility: pH 1-14.

FV 1-2 μm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13FV100C	SF13FV100M
4	25 mm	SF25FV100L	_	SF25FV100M
V	30 mm	SF30FV100L	_	SF30FV100M
	33 mm	SF33FV100L	_	SF33FV100M

MCE – Mixed cellulose esters

- Showing a good chemical resistance, MCE syringe filters are efficient in the filtration of proteins, enzymes and other aqueous solutions. The applications are various such as clarification, purification or sterilization of biological fluids.
 - ► Chemical compatibility: pH 4-8.

Pore size (µm) [for ø 25 mm]	0.22 μm	0.45 μm
Water flow (mL/mn@10psi)	65-80	85-116
Bubble point (psi)	42-54	25-33

MCE 0.22 μm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13ME22C	SF13ME22M
1	25 mm	SF25ME22L	SF25ME22C	SF25ME22M
V	30 mm	SF30ME22L	_	SF30ME22M
	33 mm	SF33ME22L	_	SF33ME22M
AFV V	25 mm	SF25MEF22L	_	SF25MEF22M

MCE 0.22 µm sterile	Ø Diameter	x50
	13 mm	SF13ME22S
	25 mm	SF25ME22S
	30 mm	SF30ME22S
	33 mm	SF33ME22S

MCE 0.45 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13ME45C	SF13ME45M
1	25 mm	SF25ME45L	SF25ME45C	SF25ME45M
V	30 mm	SF30ME45L	_	SF30ME45M
	33 mm	SF33ME45L	_	SF33ME45M
AFV V	25 mm	SF25MEF45L	_	_

MCE 0.45 µm stérile	Ø Diameter	x50
	13 mm	SF13ME45S
	25 mm	SF25ME45S
	30 mm	SF30ME45S
	33 mm	SF33ME45S

NYL – Polyamide

- Naturally hydrophilic, with a good mechanical strength and strong absorption, the NYL syringe filters are suitable for the filtration of HPLC samples, filtration and clarification of solvents.
 - ► Chemical compatibility: pH 3-14.

Pore size (µm) [for ø 25 mm]	0.22 μm	0.45 μm	0.80 μm	1.20 µm	3.0 µm
Water flow (mL/mn@10psi)	21-36	47-55	78-88	105-120	220-260
Bubble point (psi)	46-55	27-33	21-25	15-18	5-8

NYL 0.22 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13NY22C	SF13NY22M
1	25 mm	SF25NY22L	SF25NY22C	SF25NY22M
₩ ₩	30 mm	SF30NY22L	_	SF30NY22M
	33 mm	SF33NY22L	_	SF33NY22M
ŬFV V	25 mm	SF25NYF22L	_	SF25NYF22M

NYL 0.22 µm sterile	Ø Diameter	x50
	13 mm	SF13NY22S
	25 mm	SF25NY22S
	30 mm	SF30NY22S
	33 mm	SF33NY22S
FV	25 mm	SF25NYF22S

NYL 0.45 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13NY45C	SF13NY45M
1	25 mm	SF25NY45L	SF25NY45C	SF25NY45M
V	30 mm	SF30NY45L	_	SF30NY45M
	33 mm	SF33NY45L	_	SF33NY45M
ŬFV V	25 mm	SF25NYF45L	_	SF25NYF45M

NYL 0.45 µm sterile	Ø Diameter	x50
	13 mm	SF13NY45S
	25 mm	SF25NY45S
	30 mm	SF30NY45S
	33 mm	SF33NY45S
A FV	25 mm	SF25NYF45S

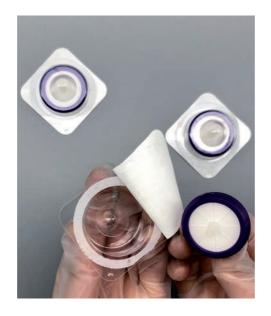
NYL 0.80 µm non sterile	Ø Diameter	x50	x100	x1000
4	25 mm	SF25NY80L	_	SF25NY80M

NYL 1.20 µm non sterile	Ø Diameter	x50	x100	x1000
	25 mm	SF25NY120L	_	SF25NY120M

NYL 3.0 µm non sterile	Ø Diameter	x50	x100	x1000
A	25 mm	SF25NY500L	_	SF25NY500M

PES – Polyethersulfone

- Made with a hydrophilic membrane, polyesthersulfone syringe filters show both a high thermic and a great chemical resistance. Their water flow rate is ideal for alkaline liquid or organic solvent filtration. They can be used for a very fast filtration of viscous solutions.
 - ▼ Chemical compatibility: pH 4-8.


Pore size (µm) [for ø 25 mm]	0.22 μm	0.45 μm
Water flow (mL/mn@10psi)	70-92	118-162
Bubble point (psi)	64-68	42-49

PES 0.22 μm non sterile	Ø Diameter	x50	x100	x1000
1	13 mm	_	SF13PE22C	SF13PE22M
	25 mm	SF25PE22L	SF25PE22C	SF25PE22M
V	30 mm	SF30PE22L	_	SF30PE22M
	33 mm	SF33PE22L	_	SF33PE22M
ĮFV V	25 mm	SF25PEF22L	_	SF25PEF22M

PES 0.22 μm sterile	Ø Diameter	x50
P	13 mm	SF13PE22S
	25 mm	SF25PE22S
	30 mm	SF30PE22S
	33 mm	SF33PE22S

PES 0.45 µm non sterile	Ø Diameter	x50	x100	x1000
1	13 mm	_	SF13PE45C	SF13PE45M
	25 mm	SF25PE45L	SF25PE45C	SF25PE45M
V	30 mm	SF30PE45L	_	SF30PE45M
	33 mm	SF33PE45L	_	SF33PE45M
AFV V	25 mm	SF25PEF45L	_	SF25PEF45M

PES 0.45 µm sterile	Ø Diameter	x50
Ð	13 mm	SF13PE45S
	25 mm	SF25PE45S
	30 mm	SF30PE45S
	33 mm	SF33PE45S

PP – Polypropylene

- Hydrophobic and with an excellent chemical stability, the PP syringe filters are suitable for HPLC samples containing weak solids or sterile filtration of samples of small volume.
 - ► Chemical compatibility: pH 1-14.

Pore size (µm) [for ø 25 mm]	0.22 μm	0.45 μm
Water flow (mL/mn@10psi)	252-305	550-635
Bubble point (psi)	_	_

PP 0.22 μm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13PP22C	SF13PP22M
4	25 mm	SF25PP22L	_	SF25PP22M
	33 mm	SF33PP22L	_	SF33PP22M
ДFV V	25 mm	SF25PPF22L	_	SF25PPF22M

PP 0.22 µm sterile	Ø Diameter	x50
	13 mm	SF13PP22S
	25 mm	SF25PP22S
	33 mm	SF33PP22S

PP 0.45 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13PP45C	SF13PP45M
	25 mm	SF25PP45L	SF25PP45C	SF25PP45M
	33 mm	SF33PP45L	_	SF33PP45M
ДFV V	25 mm	SF25PPF45L	_	SF25PPF45M

PP 0.45 μm sterile	Ø Diameter	x50
	13 mm	SF13PP45S
	25 mm	SF25PP45S
	33 mm	SF33PP45S

PVDF - Polyvinylidene

- PVDF syringe filters are hydrophobic and offer an excellent chemical resistance against most organic solvents and aggressive liquids. They are suitable for air and gas filtration.
 - ► Chemical compatibility: pH 1-14.

Pore size (µm) [for ø 25 mm]	0.22 μm	0.45 μm
Water flow (mL/mn@10psi)	30-40	70-105
Bubble point (psi)	21-23	11-23

PVDF 0.22 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13PV22C	SF13PV22M
4	25 mm	SF25PV22L	_	SF25PV22M
	33 mm	SF33PV22L	_	SF33PV22M
AFV V	25 mm	SF25PVF22L	_	SF25PVF22M

PVDF 0.22 µm sterile	Ø Diameter	x50
	13 mm	SF13PV22S
	25 mm	SF25PV22S
	33 mm	SF33PV22S

PVDF 0.45 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13PV45C	SF13PV45M
4	25 mm	SF25PV45L	SF25PV45C	SF25PV45M
	33 mm	SF33PV45L	_	SF33PV45M
ДFV V	25 mm	SF25PVF45L	_	SF25PVF45M

PVDF 0.45 µm sterile	Ø Diameter	x50
	13 mm	SF13PV45S
	25 mm	SF25PV45S
	33 mm	SF33PV45S

PTFE - Polytetra-fluorethylene

- Naturally hydrophobic, the PTFE syringe filters are used for air sterilization or for the preparation of HPLC samples, for the filtration of solvents and corrosive solutions. For aqueous solution filtration, you need to wet the membrane with an adapted solvent such as ethanol or methanol.
 - ▼ Chemical compatibility: pH 1-14.

Pore size (µm) [for ø 25 mm]	0.22 μm	0.45 μm	3.0 µm
Water flow (mL/mn@10psi)	38-52	90-102	430-460
Bubble point (psi)	15-22	10-13	_

PTFE 0.22 μm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13PT22C	SF13PT22M
1	25 mm	SF25PT22L	SF25PT22C	SF25PT22M
V	30 mm	SF30PT22L	_	SF30PT22M
	33 mm	SF33PT22L	_	SF33PT22M
ДFV V	25 mm	SF25PTF22L	_	SF25PTF22M

PTFE 0.22 µm sterile	Ø Diameter	x50
	13 mm	SF13PT22S
	25 mm	SF25PT22S
	30 mm	SF30PT22S
	33 mm	SF33PT22S

PTFE 0.45 μm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13PT45C	SF13PT45M
1	25 mm	SF25PT45L	SF25PT45C	SF25PT45M
V	30 mm	SF30PT45L	_	SF30PT45M
	33 mm	SF33PT45L	_	SF33PT45M
ДFV V	25 mm	SF25PTF45L	_	SF25PTF45M

PTFE 0.45 µm sterile	Ø Diameter	x50
	13 mm	SF13PT45S
	25 mm	SF25PT45S
	30 mm	SF30PT45S
	33 mm	SF33PT45S

PTFE 3.0 µm non sterile	Ø Diameter	x10
4	25 mm	SF25PT300X

RC - Regenerated cellulose

- RC syringe filters are recommended for the direct filtration of aqueous solutions or of any type of organic solvent. Their benefit is to offer a great capacity of particles extraction.
 - ► Chemical compatibility: pH 3-12.

Pore size (µm) [for ø 25 mm]	0.22 μm	0.45 μm
Water flow (mL/mn@10psi)	30-38	53-74
Bubble point (psi)	59-70	45-49

RC 0.22 μm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13RC22C	SF13RC22M
1	25 mm	SF25RC22L	SF25RC22C	SF25RC22M
V	30 mm	SF30RC22L	_	SF30RC22M
	33 mm	SF33RC22L	_	SF33RC22M
ŬFV V	25 mm	SF25RCF22L	_	SF25RCF22M

RC 0.22 μm sterile	Ø Diameter	x50
	13 mm	SF13RC22S
	25 mm	SF25RC22S
	30 mm	SF30RC22S
	33 mm	SF33RC22S

RC 0.45 µm non sterile	Ø Diameter	x50	x100	x1000
	13 mm	_	SF13RC45C	SF13RC45M
1	25 mm	SF25RC45L	SF25RC45C	SF25RC45M
V	30 mm	SF30RC45L	_	SF30RC45M
	33 mm	SF33RC45L	_	SF33RC45M
AFV V	25 mm	SF25RCF45L	_	SF25RCF45M

RC 0.45 µm sterile	Ø Diameter	x50
	13 mm	SF13RC45S
	25 mm	SF25RC45S
	30 mm	SF30RC45S
	33 mm	SF33RC45S

Venting filters

ullet For a greater filtration surface than syringe filters, the venting filters (PTFE membrane, \emptyset 47 mm, sterile) bare specific connections that are adapted for the direct connection to flexibles.

Code	FE47PT22S	FE47PT45S
Pore size (µm)	0.22 μm	0.45 μm
Ø (mm)	47	47
Bubble point	1.2	0.8
Туре		
Quantity	X25	X25

TABLE OF CHEMICAL COMPATIBILITY

INDICATION	UTILISATION
✓	Recommended use
X	Non recommended use
+/-	Limited resistance
?	Use to be confirmed (to be tested before use)

Acids	CA	FV	MCE	NY	PES	PTFE	PVDF
Acetic, glacial	Х	/	+/-	+/-	~	/	/
Acetic, 25%	+/-	~	+/-	+/-	~	/	/
Hydrochloric concentrated	X	~	X	X	~	X	~
Hydrochloric, 25%	~	~	X	+/-	~	~	~
Sulfuric, 98%	Х	~	Х	Х	Х	~	+/-
Sulfuric, 25%	X	~	+/-	X	~	~	~
Nitric, 65%	X	~	X	?	~	~	+/-
Nitric, 25%	X	?	+/-	X	+/-	~	~
Phosphoric, 25%	~	~	+/-	X	?	~	~
Trichloroacetic, 25%	X	~	+/-	X	?	~	~
Alcohols	CA	FV	MCE	NY	PES	PTFE	PVDF
Methanol, 98%	~	~	Х	~	~	~	~
Ethanol, 98%	Х	~	Х	+/-	+/-	~	~
Ethanol, 70%	~	~	~	~	~	~	~
Isopropanol	~	~	+/-	~	~	~	~
n-Propanol	~	~	~	~	?	~	~
n-Butanol	~	~	~	~	~	~	~
Benzyl	X	~	~	~	?	~	~
Ethylene glycol	+/-	~	+/-	~	~	~	~
Propylene glycol	+/-	~	~	~	~	?	~
Glycerol	+/-	~	~	+/-	+/-	~	~
Ketones	CA	FV	MCE	NY	PES	PTFE	PVDF
Acetone	Х	~	Х	Х	Х	~	Х
Cyclohexanone	Х	~	Х	+/-	Х	~	~
Methyl ethyl ketone	Х	~	?	+/-	Х	~	Х
Isopropylacetanon	+/-	~	×	~	Х	~	Х
Methyl isobytyl ketone	~	~	X	~	?	~	?

Bases	CA	FV	MCE	NY	PES	PTFE	PVDF
Ammonium	+/-	✓	~	✓	Х	✓	~
Sodium hydroxide, 25%	Х	✓	+/-	Х	✓	✓	~
Halogenated hydrocarbons	CA	FV	MCE	NY	PES	PTFE	PVDF
Methylene chlroride	X	~	+/-	~	X	X	X
Chloroform	X	~	~	~	X	~	X
Trichloroethylene	Х	~	~	~	+/-	+/-	Х
Monechloro-benzene	~	~	~	+/-	?	~	~
Carbon tetrachloride	?	✓	X	✓	~	~	Х
Hydrocarbons	CA	FV	MCE	NY	PES	PTFE	PVDF
Hexane, Xylene	X	~	~	+/-	X	~	~
Toluene, Benzene	X	~	~	~	~	~	X
Kerosene, Gasoline	X	~	~	~	+/-	~	~
Oxides - Ethers	CA	FV	MCE	NY	PES	PTFE	PVDF
Oxides - Ethers Diethyl ether	CA +/-	FV	MCE X	NY 🗸	PES X	PTFE ✓	PVDF ?
						=	
Diethyl ether	+/-	~	Х	~	X	✓	?
Diethyl ether Dioxane	+/- X	✓ ✓	X	✓ ✓	×	✓ ✓	?
Diethyl ether Dioxane Tetrahydrofuran	+/- X X		X X		X		? +/- X
Diethyl ether Dioxane Tetrahydrofuran Dimethylsulfoxide	+/- X X		X X X		× × × ×	✓✓✓	? +/- X
Diethyl ether Dioxane Tetrahydrofuran Dimethylsulfoxide Isopropyl ether Solvents with	+/- X X X		X X X X	✓ ✓ ✓ +/-	x x x		? +/- X X
Diethyl ether Dioxane Tetrahydrofuran Dimethylsulfoxide Isopropyl ether Solvents with nitrogen	+/- X X X X	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	X X X X X MCE	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	X X X X PES	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	? +/- X X ? PVDF
Diethyl ether Dioxane Tetrahydrofuran Dimethylsulfoxide Isopropyl ether Solvents with nitrogen Dimethyl formamide	+/- X X X X X X	✓✓✓✓FV	X X X X X X X	✓ ✓ ✓ ✓ ✓ +/- NY ✓	X X X X X X	Y Y Y PTFE	? +/- X X ? PVDF X
Diethyl ether Dioxane Tetrahydrofuran Dimethylsulfoxide Isopropyl ether Solvents with nitrogen Dimethyl formamide Diethylacetamide	+/- X X X X X X	✓✓✓✓FV✓	X X X X X X	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	X X X X PES X ?	Y Y Y PTFE Y	? +/- X X ? PVDF X X
Diethyl ether Dioxane Tetrahydrofuran Dimethylsulfoxide Isopropyl ether Solvents with nitrogen Dimethyl formamide Diethylacetamide Pyridine	+/- X X X X X X X	✓✓✓✓✓✓	X X X X X X X	Y Y Y +/- NY Y Y Y Y	X X X X X PES X ?	Y Y Y Y PTFE Y Y	? +/- X X ? PVDF X X
Diethyl ether Dioxane Tetrahydrofuran Dimethylsulfoxide Isopropyl ether Solvents with nitrogen Dimethyl formamide Diethylacetamide Pyridine Acetonitrile	+/- X X X X X X X X X X X X	FV	X X X X X X X X X X X X X X X X	\rightarrow \right	X X X X X PES X ? X	Y Y Y Y PTFE Y Y	? +/- X X ? PVDF X X

EXTRACTION THIMBLES

• With the appropriate solvents, the extraction thimbles enable to extract specific particles from a solid substance, allowing a more accurate and swifter analysis. They are neutral and fat free and offer a high mechanical strength and an excellent retention capacity. The very high quality of the fibers used for the extraction thimbles allow a great capability of reproduction during the analysis.

▼ They are available in 3 different raw materials:

- Cotton linter fibres: ETC.

- Glass microfiber: ETG (<550°C) - Quartz microfibers: ETQ (≥550°C)

► Available in box of 25 units

All indicated dimensions are interior sizes.

Other sizes on request.

Size (mm)	ETC
19x90	ETC19/90
22x60	ETC22/60
22x80	ETC22/80
25x80	ETC25/80
25x100	ETC25/100
26x60	ETC26/60
27x80	ETC27/80
28x80	ETC28/80
28x100	ETC28/100
28x120	ETC28/120
30x80	ETC30/80
30x100	ETC30/100
30x150	ETC30/150
33x60	ETC33/60
33x80	ETC33/80
33x94	ETC33/94
33x100	ETC33/100
33x118	ETC33/118
34x130	ETC34/130
35x150	ETC35/150
37x130	ETC37/130
41x123	ETC41/123
41x150	ETC41/150
43x123	ETC43/123
58x170	ETC58/170
70x240	ETC70/240
80x250	ETC80/250

Size (mm)	ETG
19x90	ETG19/90
22x80	ETG22/80
25x80	ETG25/80
25x100	ETG25/100
26x60	ETG26/60
30x80	ETG30/80
30x100	ETG30/100
33x80	ETG33/80
33x94	ETG33/94
35x150	ETG35/150
43x123	ETG43/123

Size (mm)	ETQ
22x65	ETQ22/65
25X80	ETQ25/80
25x100	ETQ25/100
26x60	ETQ26/60
30x80	ETQ30/80
30x100	ETQ30/100
35x150	ETQ35/150
43x123	ETQ43/123

TECHNICAL FILTERS

• Conceived for industrial applications, technical filters can be used in various fields: pharmaceuticals, chemicals, cosmetics, food...

Made of 100% pure cellulose fibres, they are reinforced with a specific resin which gives them extra resistance. Therefore, they can either be part of the industrial manufacturing process or be employed for the filtration of liquid solutions to separate the materials (for example for the recovery of precious metals).

- ▼ filtraTECH grades: FT100 | FT101 | FT102 | FT103 | FT104 | FT105 FT106 | FT107 | FT108 | FT110 | FT111 | FT113.
- Available in plain discs with or without holes (A), folded discs (P), sheets with or without holes. (F).

Because your tools and machines have been developed to meet your needs, filtraTECH can create cut-out discs. Besides the standard sizes, we know how to work the filters to adapt them perfectly to your industrial tools, from samples or work plans. Do not hesitate to contact us for a customized quotation (non-standardized size, specific requirements).

0
Ō
$\overline{}$
\vdash
щ

Thin and creped paper, for the filtration of precipitated coarse particles (viscous products such as oils), good water resistance.						
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	
60	Creped	0.25	50-65	4	1.55	

FT101

FT102

FT103

臣

+	
6	
Γ	

Weight (g/m²)	Appearance	Thickness	Pore size	Filtration speed	Burst strength
DIN 53104		(mm)	(µm)	(sec) DIN 53137	(kg/cm²)
60	Creped	0.25	50-65	4	1.55

Thick creped filter paper, often used for the filtration of fats in food (syrups, oils) or for heated filtration.							
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)		
160	Creped	0.55	38-75	26	1.55		

Very thick, creped paper, fast filtration speed, good burst resistance.							
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)		
190	Creped	0.65	25-35	27	1.90		

Thick paper, particularly adapted for small particle filtration (salted solutions, alcohols, ethers).						
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	
150	Smooth	0.3	12-16	65	3.90	

Smooth paper made of 70% cellulose and 30% shell powder (kielselghur) dedicated to the clarification of fragances / oils, or the filtration of lactic acid serums, vaccines and other injectable solutions.

	,				
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
140	Smooth	0.35	-	30	1.20

Mostly recommended for filtration that require high mechanical and chemical resistance (alkaline products, oils, sugar).						
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	
185	Smooth	0.39	3-6	80	4.00	

FT106

Thick filter with fast filtration for oily or thick products.							
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)		
160	Smooth	0.47	50-80	12	1.5		

FT107

Adapted to the filtration of medium-sized particles thanks to its tighter fibres.						
	Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
	160	Smooth	0.38	20-30	45	3.20

FT108

Average filtration paper for usage in chemical applications (galvanic baths).							
	Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)	
	85	Smooth	0.18	12-15	60	1.45	

FT110

Thin	creped filter paper, d	lesigned for the filtra	tion of small particles	s (such as precious me	tals).
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (µm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)
90	Creped	0.33	25-35	25	1.65

FT111

Thick creped	Thick creped paper for a better resistance to aqueous solutions (liquid food filtration such as juices, wines).								
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)				
140	Creped	0.45	10-20	50	1.45				

FT113

Very thick paper with the greatest mechanical resistance for food or chemical industries.									
Weight (g/m²) DIN 53104	Appearance	Thickness (mm)	Pore size (μm)	Filtration speed (sec) DIN 53137	Burst strength (kg/cm²)				
240	Creped	0.78	55-65	28	3.00				

FILTER BOARDS

- Designed for industrial filtration, filtraTECH 's series of board filters has been shaped to answer most encountered applications and can be used in a filter press system.
 - ▼ filtraTECH grades: FT200 | FT201 | FT202 | FT203 | FT204 | FT205 | FT207 | FT208.
 - ▼ Available in plain discs with or without holes (A), sheets with or without holes (F).
 - Specific shapes upon request.

_				
FT200	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
E	190	0.41	1.6	Chemical products, edible oils
FT201	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
H	280	0.65	2.6	Galvanic baths, lacquers, hydrocarbons
FT202	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
ᇤ	300	0.70	2.8	Non-edible mineral oils
		I		
FT203	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
Ë	390	0.93	3.2	Galvanic baths, non-edible oils, resins
_				
FT204	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
ᇤ	500	1.13	7.0	Essential oils, edible oil brilliant filtration
95	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
FT205	350	0.78	5.0	Non-edible oils, chemical products, hydrocarbons
FT207	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
Ħ	250	0.58	3.5	Technical oils, paraffin, cosmetics clarification
		I		
FT208	Weight (g/m²)	Thickness (mm)	Pressure (kg/cm2)	Usual applications
FTZ	450	1.03	4	Water process, pharmaceuticals, active carbon retention

FILTER PRESS SYSTEM

• When the industrial process has not been conceived initially to integrate a filtration system, it is possible to use a removable filter-press system made of stainless steel. Easy to handle, economical and compact, the filter-press system enables to filter small quantities of liquids while maintaining an accurate level of filtration.

It is connected to standard 220V power and has an inlet connection of 20 mm diameter.

Nb. of PP boards	Sheet size (cm)	Maximum pressure (bar)	Code
6	20x20	20	FP06SS2020
12	20x20	20	FP12SS2020
18	20x20	20	FP18SS2020

- The range of filter sheets conceived by filtraTECH can be used in many industrial applications and enable to obtain all types of filtration (prefiltration, clarification, sterilization). All conform to food usage, they show a great chemical resistance and are all traceable. The filter sheets can be used in all sorts of industries: cosmetics, pharmaceuticals, food, chemicals...
 - Available in sheets or discs with/without holes (1,2 or 4.)
 - ▶ Also sold in lenticular modules (diameter 12" or 16").

INDICATION	COMPOSITION			
С	100 % cellulose			
C+K	Cellulose + kieselghur			
C+PE	Cellulose + polyethylene fibres			
C+K+PE	Cellulose + kieselghur + polyethylene fibres			

FT300	Weight (g/m²)	Thickness (mm)	Composition	Pore size (μm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
臣	700	4	С	40.0/50.0	65	3750	Prefiltration
FT301	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
正	775	3.45	С	25.0/35.0	50	2286	Prefiltration
FT302	Weight (g/m²)	Thickness (mm)	Composition	Pore size (μm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
匠	775	2	С	20.0/25.0	34.5	1510	Prefiltration
FT303	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
됴	800	3.2	С	14.0/20.0	45	3086	Prefiltration
FT304	Weight (g/m²)	Thickness (mm)	Composition	Pore size (μm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
臣	1000	3.6	C+K	12.0/15.0	30	861	Prefiltration
FT305	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
正	950	2.2	C+K	10.0/15.0	24.5	731	Prefiltration
FT306	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
臣	1100	2.9	C+K	3.0/8.0	19	314	Clarification
							1
FT307	Weight (g/m²)	Thickness (mm)	Composition	Pore size (μm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
됴	1100	3.35	C+K	2.0/7.0	24.5	450	Clarification

FT308	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
FT3	1200	3.25	C+PE	1.0/5.0	16	190	Clarification
FT309	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
臣	1200	3.35	C+K+PE	0.9/2.0	21.5	148	Clarification
FT310	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
iL	1200	3.05	C+K+PE	0.6/1.0	14	171	Clarification
FT311	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
	1250	3.35	C+K	0.5/1.0	17.5	89	Clarification
FT312	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
匠	1250	3.2	C+PE	0.4/0.6	11	122	Clarification
FT313	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
匠	1300	3.35	C+K	0.4/0.6	14.5	60	Clarification
FT314	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
	1300	3.1	C+K	0.3/0.5	11	73	Clarification
					_		
315	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (µm)	Permeability (L/m²/mm)	Application
臣	1350	3.35	C+PE	0.3/0.5	13.5	55	Sterilization
FT320	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
匠	1450	3.45	C+PE	0.2/0.3	9	48	Sterilization
2	Weight	Thickness	Carranitian	Pore size	Pore max.	Permeability	Analization
FT325	(g/m²)	(mm)	Composition	(μm)	(µm)	(L/m²/mm)	Application
_	1500	3.75	C+K	0.2/0.3	13.5	44	Sterilization
9	Weight	Thickness	Composition	Pore size	Pore max.	Permeability	Application
FT326	(g/m²)	(mm)		(µm)	(μm)	(L/m²/mm)	
	1400	3.45	C+K	0.15/0.25	8.85	48	Sterilization
FT330	Weight (g/m²)	Thickness (mm)	Composition	Pore size (µm)	Pore max. (μm)	Permeability (L/m²/mm)	Application
	1500	4	C+K	0.04/0.2	8	†	

NON WOVEN FILTERS

• Non woven filters are made of long synthetic fibres combined with synthetic resins which offer a stronger resistance to humidity compared to cellulose. They show both a good absorption capacity and a high level of filtration speed and are ideal for the filtration of visible particles, the recovery of largest particles of precious metals, milk, water process...

NT20	Weight (g/m²)	Thickness (mm)	Pore size (μm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	(F)	A
Z	20	0.18	_	_	5600	✓	✓	✓
NT25	Weight (g/m²)	Thickness (mm)	Pore size (μm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	 √F /	A
Z	25	0.20	193	369	5399	✓	✓	✓
NT35	Weight (g/m²)	Thickness (mm)	Pore size (μm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	(F)	A
Z	35	0.26	181	323	4633	✓	✓	✓
NT50	Weight (g/m²)	Thickness (mm)	Pore size (µm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	(F)	A
Z	50	0.35	158	254	3483	✓	✓	✓
NT65	Weight (g/m²)	Thickness (mm)	Pore size (μm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	(F)	A
Z	65	0.32	_	550	2600	✓	✓	✓
NT80	Weight (g/m²)	Thickness (mm)	Pore size (μm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	(F)	A
Z	80	0.6	_	191	2260	✓	✓	✓
1110	Weight (g/m²)	Thickness (mm)	Pore size (µm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	 √F /	A
Z	110	0.70	50	400	2200	✓	✓	✓
NT130	Weight (g/m²)	Thickness (mm)	Pore size (μm)	Water permeability m3/m²/h)	Air permeability (L/m²/mm)	R	(F)	A
Z	130	1.20	45	370	1750	~	~	/

MESH FILTERS

- Depending on the acid resistance or the abrasion you are looking for, 2 fabrics of mesh filters (TF) are available for air or gas filtration, for water process: nylon (NY) or polypropylene (PP).
 - ▼ The mesh filters can be sold in rolls of approximately 1020 mm large (length upon request – minimum of 5 m), in sheets or discs.

≻
Z
1
ш
⊢ .

Composition	Thickness (mm)	Max temperature (°C)	Abrasion resistance	Acid resistance	R	(F)	A
Polyamide 6.6	1-325	115	Good	Limited	✓	✓	✓

Composition	Thickness (mm)	Max temperature (°C)	Abrasion resistance	Acid resistance	R	(F)	A
Polypropylene	75-5100	90	Limited	Good	✓	✓	~

ACTIVE CARBON CARTRIDGES

• The active carbon cartridges are made of granules of active carbon and are efficient for the filtration of very small particles and for galvanic baths.

		Size						
		10"	20"	30"	40"			
NB units per box		60	30	30	20			
SI	DOE	CCA10/DOE	CCA20/DOE	CCA30/DOE	CCA40/DOE			
Connections	2.222	CCA10/222	CCA20/222	CCA30/222	CCA40/222			
Ö	2.226	CCA10/226	CCA20/226	CCA30/226	CCA40/226			

WOUNDED YARN CARTRIDGES

- Made of polypropylene, the wounded yarn cartridges can be used for water process, filtration of chemical or petro-chemical products, cosmetics... They can be adapted to all sorts of systems with their various combinations of pore sizes, dimensions and connections.
 - Pore sizes (μm): 1 | 3 | 5 | 10 | 20 | 30 | 50 | 75 | 100.
 - ▼ Cartridge sizes (inches): 10" in boxes of 60 | 20"
 - in boxes of 30 | 40" in boxes of 20.
 - Connections: DOE | 2.222 | 2.226 (other materials upon request).

To help you create the code that you want to order, please find below some examples:

- ▼ Cartridges in PP: porosity 5, size 30" connection DOE
- = CB30PP005/DOE.
- Cartridges in PP: porosity 75, size 10" connection 2.222
- = CB10PP075/222.
- Cartridges in PP: porosity 20, size 40" connection DOE 2.226
- = CB40PP020/226.

FILTER HOUSING

- To insert your cartridges, you can use our filter housings. To help you create the code that you want to order, please find below some examples:
 - ► Filter housing in polypropylene: size 30", connection 3/4" = CAR30PP/34.
 - ► Filter housing in stainless steel: size 10′, connection 1″= CAR10SS/10.

Material	Polypropylene (PP)	Stainless steel (SS)
Max. pressure resistance	6 bars	10 bars
	10"	
Available sizes	20"	10"
	30"	20"
	40"	
	1"	1"
Available connections	3/4"	3/4"

INDEX

■ GRADE	■ SECTION	■ PAGE	■ GRADE	■ SECTION	■ PAGE	■ GRADE	■ SECTION	■ PAGE
AP	DEVICE	33	FT310	SHEET	49	PH913	INDICATOR	26, 27
BOC	STOPPER	24	FT311	SHEET	49	PHACEPLOM	INDICATOR	26
CAR	CARTRIDGE	52	FT312	SHEET	49	PHCONGO	INDICATOR	26
СВ	CARTRIDGE	52	FT313	SHEET	49	PHDIAG	INDICATOR	27
CCA	CARTRIDGE	51	FT314	SHEET	49	PHIOPOTAR	INDICATOR	26
CH51	CHROMATOGRAPHY	22	FT315	SHEET	49	PHPHENOL	INDICATOR	26
CH53	CHROMATOGRAPHY	22	FT320	SHEET	49	PHTRSOLB	INDICATOR	26
CH58	CHROMATOGRAPHY	22	FT325	SHEET	49	PHTRSOLN	INDICATOR	26
CH59	CHROMATOGRAPHY	22	FT326	SHEET	49	PHTRSOLR	INDICATOR	26
CY430	MEDICAL	21	FT330	SHEET	49	PJ	CLEANING	14
FE	VENTING	42	FV21	GLASS MICROFIBER	11	POMPE	DEVICE	34
ES	HYGIENE	14	FV22	GLASS MICROFIBER	11	PP125	HYGIENE	13
ETC	THIMBLES	44	FV23	GLASS MICROFIBER	11	PP210	HYGIENE	13
ETG	THIMBLES	44	FV24	GLASS MICROFIBER	11	PP400	HYGIENE	13
ETQ	THIMBLES	44	FV25	GLASS MICROFIBER	11	PS60	MEDICAL	21
FP	DEVICE	47	FV26	GLASS MICROFIBER	11	QL01	QUALITATIVE	8
FQ30	QUARTZ MICROFIBER	12	FV27	GLASS MICROFIBER	12	QL02	QUALITATIVE	8
FS90	SUGAR INDUSTRY	19	FV29	GLASS MICROFIBER-	12	QL03	QUALITATIVE	8
FS91	SUGAR INDUSTRY	19	MF-CA	MEMBRANE	28	QL04	QUALITATIVE	8
FS92	PHASE SEPARATION	16	MF-MCE	MEMBRANE	29, 30	QL05	QUALITATIVE	8
FS93	PHOSPHATE FREE	16	MF-NYL	MEMBRANE	30	QL08	QUALITATIVE	8
FS94	PHOSPHATE FREE	16	MF-PC	MEMBRANE	31	QT41	QUANTITATIVE	9
FS96	LOW NITROGEN	17	MF-PES	MEMBRANE	31	QT42	QUANTITATIVE	9
FS97	BREWERY	19	MF-PP	MEMBRANE	31	QT43	QUANTITATIVE	9
FS98	BLACK	17	MF-PTFE	MEMBRANE	32	QT44	QUANTITATIVE	9
FS99	ACTIVATED CARBON	18	MF-RC	MEMBRANE	32	QT45	QUANTITATIVE	9
FT100	TECHNICAL	45	MFDISTRI	DEVICE	30	QT46	QUANTITATIVE	9
FT101	TECHNICAL	45	NP581010	WEIGHING	15	QT48	QUANTITATIVE	10
FT102	TECHNICAL	45	NT110	DAIRY, NON WOVEN	20, 50	QT49	QUANTITATIVE	10
FT103	TECHNICAL	45	NT130	DAIRY, NON WOVEN	20, 50	QT51	QUANTITATIVE	10
FT104	TECHNICAL	45	NT20	NON WOVEN	50	QT53	QUANTITATIVE	10
FT105	TECHNICAL	45	NT25	NON WOVEN	50	QT55	QUANTITATIVE	10
FT106	TECHNICAL	46	NT35	NON WOVEN	50	RF	DEVICE	34
FT107	TECHNICAL	46	NT50	NON WOVEN	50	SF-CA	SYRINGE	36
FT108	TECHNICAL	46	NT65	NON WOVEN	50	SF-FV	SYRINGE	37
FT110	TECHNICAL	46	NT80	NON WOVEN	50	SF-MCE	SYRINGE	37
FT111	TECHNICAL	46	OP12	OPTICAL	15	SF-NYL	SYRINGE	38
FT113	TECHNICAL	46	OP13	OPTICAL	15	SF-PES	SYRINGE	39
FT200	BOARD	47	PA320	MEDICAL	21	SF-PP	SYRINGE	40
FT201	BOARD	47	PB190	BLOTTING	23	SF-PTFE	SYRINGE	41
FT202	BOARD	47	PB255	BLOTTING	23	SF-PVDF	SYRINGE	40, 41
FT203	BOARD	47	PE25	WEIGHING	15	SF-RC	SYRINGE	42
FT204	BOARD	47	PE45	WEIGHING	15	SL	BLOTTING, OPTICAL	15
FT205	BOARD	47	PG110	TEST SEED	18	ST60	STANDARD	7
FT207	BOARD	47	PG160	TEST SEED	18	ST61	STANDARD	7
FT208	BOARD	47	PH010	INDICATOR	26	ST62	STANDARD	7
FT300	SHEET	48	PH055	INDICATOR	23, 26, 27	ST63	STANDARD	7
FT301	SHEET	48	PH060	INDICATOR	27	ST64	STANDARD	7
FT302	SHEET	48	PH111	INDICATOR	26	ST67	STANDARD	7
FT303	SHEET	48	PH114	INDICATOR	26, 27	SUPMURAL	HYGIENE	14
FT304	SHEET	48	PH354	INDICATOR	26	SUPPIED	HYGIENE	14
FT305	SHEET	48	PH470	INDICATOR	26	TF-NY	MESH	51
FT306	SHEET	48	PH480	INDICATOR	27	TF-PP	MESH	51
FT307	SHEET	48	PH590	INDICATOR	26, 27	UF-MCE	DEVICE	33
FT308	SHEET	49	PH610	INDICATOR	26	UF-NYL	DEVICE	33
FT309	SHEET	49	PH680	INDICATOR	26	UF-PES	DEVICE	33
			PH714	INDICATOR	27	UF-PVDF	DEVICE	33

TABLE OF COMPARISON

• This table shows all products which are similar. Ask for our free samples, you will be able to compare the results obtained...

	tra	
-		
		_

WHATMAN

MACHEREY NAGEL

HAHNEMUEHLE

Ashless filters (quantitative)

QT41	
QT42	
QT43	
QT44	
QT45	
QT46	
QT48	
QT49	
QT51	
QT53	
QT55	

Grade N°41
Grade N°43
Grade N°40
Grade N°44
Grade N°42
_
_
589/4 jaune
541
540
542

640w	
640m	
640md	
640dd	
640d	
640de	
_	
_	
1640w	
1640md	
1640d	

FP589/1
FF369/ I
FP589/2
FP589/5
FP589/6
FP589/3
_
_
FP589/4
FP1505
FP1506
FP1507

Qualitative filters

QL01	
QL02	
QL03	
QL04	
QL05	
QL08	

Grade N°4
597
Grade N°2
Grade N°6
Grade N°5
_

617
616
616md
619
619eh
619de

EDCO 4
FP604
FP597
FP593
FP 594
FP602h
FP602eh

Standard filters

S	Г60
S	Г61
S	Г62
S	Т64

Grade N°93
Grade N°1
Grade N°114
Grade N°113

_	
615	
713	
651	

250
FP595
400
FP520b II

Glass microfibre | Quartz microfibre filters

FV21	
FV22	
FV23	
FV24	
FV25	
FV26	
FV27	
FV29	
FQ30	

Grade GF/A	
Grade GF/B	
Grade GF/C	
Grade GF/D	
Grade GF/F	
934-AH	
GF10	
GF6	
QM/A	

GF-1	
GF-2	
GF-3	
GF-4	
GF-5	
GF-6	
85/90	
_	
QF10	

FPGF50
FPGF51
FPGF52
FPGF53
FPGF55
FPGF30
FPGF10
FPGF6
FQT

Chromatography

CH51	
CH58	
CH59	

Grade 1CHR
Grade 3MMCHR
Grade 17CHR

260
261
218

FP2040a
FP2316
FP2668

filtraTECH	ADVANTEC	SARTORIUS	MUNKTELL
	Ashless filters	(quantitative)	
QT41	5A	388	OOR
QT42	3	389	OOM
QT43	5B	392	OOA
QT44	6	390	006
QT45	5C	391	ООН
QT46	4A	393	_
QT48	_	_	3/M
QT49	_	389F	_
QT51	_	1388	_
QT53	_	1392	_
QT55	_	1391	_
	Qualitati	ve filters	
QL01	1	288 et 1288	5 / V5 et 1003
QL02	2	289 et 1289	3 / V3
QL03	232	292a et 1292	110 / V110 1002
QL04	_	290 et 1290	106 / V106 1001
QL05	235	291 et 1291	120H / V120H
QL08	_	293	293
	Standar	d filters	
ST60	_	3hw	_
ST61	231	292	1F V1F
ST62	_	603	_
ST64	_	_	_
	Glass microfibre Qua	artz microfibre filters	
FV21	GA-55	GMF1	MGA
FV22	GB-140	GMF2	MGB
FV23	GC-50	GMF3	MGC
FV24	GD-120	GMF4	MGD
FV25	GF-75	GMF5	MGF
FV26	GS-25	GMF6	_
FV27	_	_	MG277
FV29	_	_	_
FQ30	QR-100	QMF	T293

Chromatography

FN1

FN7a

FN30

51B

514A

526

CH51

CH58

CH59

*****filtraTECH

121 rue Marcel Paul 45770 SARAN | FRANCE +33 (0)2 38 54 52 50

info@filtratech.fr | www.filtratech.fr

Orders: sales@filtratech.fr

Distributed by

dr. Wéber Consulting Kft.

Kodály Zoltán u. 10. 2131 Göd

www.WEBER.hu

06 27 330-149